首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >编码生成矩阵与检错监督矩阵

编码生成矩阵与检错监督矩阵

作者头像
timerring
发布2023-06-16 15:27:40
发布2023-06-16 15:27:40
7970
举报
文章被收录于专栏:TechBlogTechBlog

线性分组码

例:(7,3)线性分组码

编码-生成矩阵

编码和生成矩阵

(n,k )线性分组码的构造——依据给定的 k 个信息码元,设计满足编码条件(最小码距、码率)的 n-k个监督码元

例: 二元 (7,3) 线性分组码, n=7, k=3, r=7-3=4 ,

\mathbf{u}=\left(u_{2}, u_{1}, u_{0}\right) \rightarrow \mathbf{c}=\left(c_{6}, c_{5}, c_{4}, c_{3}, c_{2}, c_{1}, c_{0}\right)

构造:

编码位高位直接对应信息位;

编码位低位由信息位组合而成。.

\begin{array}{ll} c_{6}=u_{2} & c_{3}=u_{2} \bigoplus u_{0}=c_{6} \oplus c_{4} \\ c_{5}=u_{1} & c_{2}=u_{2} \bigoplus u_{1} \oplus u_{0}=c_{6} \oplus c_{5} \oplus c_{4} \\ c_{4}=u_{0} & c_{1}=u_{2} \bigoplus u_{1}=c_{6} \oplus c_{5} \\ & c_{0}=u_{1} \oplus u_{0}=c_{5} \oplus c_{4} \end{array}

写成矩阵形式,为

求非系统 (7,4) 线性分组码的等价系统码生成矩阵。

\mathrm{G}=\left[\begin{array}{lllllll} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right]

列的交换和初等行变换不改变矩阵的秩,变换后矩阵的各行矢量仍线性无关任何一个线性分组 (n, k)码都可等价于一个系统码。(纠错能力、编码结构) 思考:由非系统型生成矩阵变换成系统型生成矩阵,答案唯一吗?

已知某(7,4)分组码的码表如下,请问最小汉明距是多少?请写出该码的典型生成矩阵。

最小汉明距:3

生成矩阵:

G=\left[\begin{array}{lllllll} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}\right]

检错-监督矩阵

由分组码的生成矩阵可得到其监督矩阵。

\mathbf{H C}^{T}=\mathbf{0}^{T},[\mathbf{P}: \mathbf{I}] \mathbf{C}^{T}=\mathbf{0}^{T}

一般情况下, 一个 (n, k) 线性分组码的H矩阵中的(n-k)行对应(n-k)个线性监督方程组, 以确定(n-k)个监督码元。

\mathbf{H}

——线性分组码的监督矩阵,是

(n-k) \times \mathbf{n}

阶的。

若 H=[P :I], 其中 I 是 ( n-k )阶方阵, 则 H 为典型监督矩阵。

监督矩阵的特性

参考文献:

  1. Proakis, John G., et al. Communication systems engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  2. Proakis, John G., et al. SOLUTIONS MANUAL Communication Systems Engineering. Vol. 2. New Jersey: Prentice Hall, 1994.
  3. 周炯槃. 通信原理(第3版)[M]. 北京:北京邮电大学出版社, 2008.
  4. 樊昌信, 曹丽娜. 通信原理(第7版) [M]. 北京:国防工业出版社, 2012.
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-06-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 线性分组码
    • 编码-生成矩阵
      • 编码和生成矩阵
    • 检错-监督矩阵
      • 由分组码的生成矩阵可得到其监督矩阵。
      • 监督矩阵的特性
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档