前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >AB试验(七)利用Python模拟A/B试验

AB试验(七)利用Python模拟A/B试验

作者头像
HsuHeinrich
发布2023-11-02 19:09:56
3010
发布2023-11-02 19:09:56
举报
文章被收录于专栏:HsuHeinrichHsuHeinrich

AB试验(七)利用Python模拟A/B试验

到现在,我相信大家理论已经掌握了,轮子也造好了。但有的人是不是总感觉还差点什么?没错,还缺了实战经验。对于AB实验平台完善的公司 ,这个经验不难获得,但有的同学或多或少总有些原因无法接触到AB实验。所以本文就告诉大家,如何利用Python完整地进行一次A/B试验模拟。

现在,前面造好的轮子ABTestFunc.py就起到关键作用了

代码语言:javascript
复制
from faker import Faker
from faker.providers import BaseProvider, internet 
from random import randint
from scipy.stats import bernoulli
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split 
from scipy import stats
from collections import defaultdict
import toad 
import matplotlib.pyplot as plt
import seaborn as sns
import math

# 绘图初始化
%matplotlib inline
sns.set(style="ticks")
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

# 导入自定义模块
import sys
sys.path.append("/Users/heinrich/Desktop/Heinrich-blog/数据分析使用手册")
from ABTestFunc import *

上述自定义模块ABTestFunc如果有需要的同学可关注公众号HsuHeinrich,回复【AB试验-自定义函数】自动获取~

均值类指标实验模拟

实验前准备

  • 背景:某app想通过优化购物车来提高用户的人均消费,遂通过AB实验检验优化效果。
  • 实验前设定
    • 实验为双尾检验
    • 实验分流为50%/50%
    • 显著性水平为5%
    • 检验功效为80%
代码语言:javascript
复制
# 实验设定
alpha=0.05
power=0.8
beta=1-power

确定目标和假设

  • 目标:提高人均消费
  • 假设:选择商品时,醒目提示各商品优惠金额,并按照优惠截止日期排序,提高紧促感。

确定指标

  • 评价指标:人均购买金额
  • 护栏指标:样本比例、特征分布一致

确定实验单位

  • 用户ID

样本量估算

  • 模拟历史样本
代码语言:javascript
复制
# 假设用户的购买金额服从正态分布
# 模拟过去一段时间的用户购买金额
np.random.seed(0)
pays=np.random.normal(2999, 876, 50000)
plt.hist(pays, 30, density=True)
plt.show()

output_8_0

代码语言:javascript
复制
# 输出当前消费金额的均值
print(pays.mean())
# 输出当前消费金额的方差
print(np.std(pays, ddof=1))
# 计算历史数据的波动区间,并假设此次提升高于最大波动上限
print(numbers_cal_ci(pays))
代码语言:javascript
复制
2995.676447900933
873.0773017854648
[2988.0237285541257, 3003.3291672477403]
  • 依据提升情况计算样本量
代码语言:javascript
复制
# 当前消费均值为2996,方差为873,波动上限为3003。
# 假设此次实验能提高消费金额至3050元
u1=2996
u2=3050
s=np.std(pays, ddof=1)

n1=n2=numbers_cal_sample_third(u1, u2, s)
print(2*n1)
代码语言:javascript
复制
8210

随机分组

  • CR法

测试时间的估算

代码语言:javascript
复制
# 假设每天用户流量680,且用户在周终于周末的购买行为不一致,因此至少包含一周的时间
test_time=max(math.ceil(2*n1/680), 7)
print(test_time)
代码语言:javascript
复制
13

实施测试

  • 测试过程无明显异常
  • 模拟实验数据产生,并在结束时收集数据
代码语言:javascript
复制
# 自定义数据
fake = Faker('zh_CN')
class MyProvider(BaseProvider):
    def myCityLevel(self):
        cl = ["一线", "二线", "三线", "四线+"]
        return cl[randint(0, len(cl) - 1)]
    def myGender(self):
        g = ['F', 'M']
        return g[randint(0, len(g) - 1)]
    def myDevice(self):
        d = ['Ios', 'Android']
        return d[randint(0, len(d) - 1)]
fake.add_provider(MyProvider)

# 构造假数据,模拟实验过程产生的样本数据的特征
uid=[]
cityLevel=[]
gender=[]
device=[]
age=[]
activeDays=[]
for i in range(8225):
    uid.append(i+1)
    cityLevel.append(fake.myCityLevel())
    gender.append(fake.myGender())
    device.append(fake.myDevice())
    age.append(fake.random_int(min=18, max=45)) # 年龄分布
    activeDays.append(fake.random_int(min=0, max=7)) # 近7日活跃分布
    
raw_data= pd.DataFrame({'uid':uid,
                        'cityLevel':cityLevel,
                        'gender':gender,
                        'device':device,
                        'age':age,
                        'activeDays':activeDays,
                       })

raw_data.head()

image-20230206155220266

代码语言:javascript
复制
# 数据随机切分,模拟实验分流
test, control= train_test_split(raw_data.copy(), test_size=.5, random_state=0)
# 模拟用户购买金额
np.random.seed(1)
test['pays']=np.random.normal(3049, 850, test.shape[0])
control['pays']=np.random.normal(2999, 853, control.shape[0])
# 数据拼接,模拟数据收集结果
test['flag'] = 'test'
control['flag'] = 'control'
df = pd.concat([test, control])

分析测试结果

  • 样本比例合理性检验
代码语言:javascript
复制
# 查看样本比例
sns.countplot(x='flag', data=df)
plt.show()

# 查看离散变量的分布
fig, ax =plt.subplots(1, 3, constrained_layout=True, figsize=(12, 3))
for i, x in enumerate(['cityLevel', 'gender', 'device']):
    sns.countplot(x=x, data=df, hue='flag', ax=ax[i])
plt.show()

# 查看连续变量的分布
fig, ax =plt.subplots(1, 3, constrained_layout=True, figsize=(12, 3))
for i, x in enumerate(['age', 'activeDays', 'pays']):
    sns.histplot(x=x, data=df, hue='flag', ax=ax[i])
plt.show()

output_18_0

output_18_1

output_18_2

代码语言:javascript
复制
# 检验样本比例一致性
n1=control.size
n2=test.size
p1=p2=0.5
two_sample_proportion_test(n1, n2, p1, p2)
代码语言:javascript
复制
两样本比例校验: 通过
  • 样本特征一致性校验
代码语言:javascript
复制
# 检验特征分布一致性
cols=['cityLevel', 'gender', 'device', 'age', 'activeDays']
feature_dist_ks(cols, test, control)
代码语言:javascript
复制
cityLevel: 相似
gender: 相似
device: 相似
age: 相似
activeDays: 相似
  • 显著性校验
代码语言:javascript
复制
# 显著性检验
numbers_cal_significant(test['pays'], control['pays'])
代码语言:javascript
复制
方差齐性校验结果:方差相同

(3.1882855769529668,
 0.0014365540563265368,
 [23.101471736420166, 96.85309892416026])

p值小于5%,置信区间不包含0且最小提升为23,明显高于自然波动的上线。因此可以认为此次购物车优化实验有助于提高用户的人均消费

  • 拓展-维度下钻分析
代码语言:javascript
复制
# 进行维度下钻分析,采用BH法进行多重检验校正
feature=[]
value=[]
pvaules=[]
for x in ['cityLevel', 'gender', 'device']:
    for i in df[x].unique():
        feature.append(x)
        value.append(i)
        # 构造细分维度的样本
        te=test[test[x]==i]
        co=control[control[x]==i]
        # 计算细分维度的p值
        p=numbers_cal_significant(te['pays'], co['pays'], levene_print=False)[1]
        pvaules.append(p)
    
df_multiple=pd.DataFrame({'feature':feature,
                        'value':value,
                        'pvaules':pvaules
                       })
df_multiple

image-20230206155310768

代码语言:javascript
复制
# 多重检验校正
print(multiple_tests_adjust(df_multiple['pvaules']))
df_multiple['pvaules_correct']=multiple_tests_adjust(df_multiple['pvaules'])[1]
df_multiple['reject']=multiple_tests_adjust(df_multiple['pvaules'])[0]
df_multiple
代码语言:javascript
复制
(array([False, False, False, False, False, False,  True, False]), array([0.05672733, 0.19828707, 0.05672733, 0.57652105, 0.05672733,
       0.05672733, 0.04760055, 0.10353442]), 0.00625)

image-20230206155325025

维度下钻发现,只有iOS设备的用户存在显著提升

实验报告

代码语言:javascript
复制
# 关键数据展示

# 样本及均值
print('control:' ,f'sample {control.shape[0]} / mean:{control.pays.mean()}')
print('test:' ,f'sample {test.shape[0]} / mean:{test.pays.mean()}')
# 实验周期
print('times:', test_time)
# diff
print('diff:', test['pays'].mean()-control['pays'].mean())
# p值
print('p-value:', numbers_cal_significant(test['pays'], control['pays'], levene_print=False)[1])
# diff-置信区间
print('diff-ci:', numbers_cal_significant(test['pays'], control['pays'], levene_print=False)[2])
# 维度下钻结果
print('dim-result:')
for i,v in zip(df_multiple.value,df_multiple.reject):
    print(' '*2,f'{i}:{v}')
代码语言:javascript
复制
control: sample 4113 / mean:3000.5565990602113
test: sample 4112 / mean:3060.533884390513
times: 13
diff: 59.977285330301584
p-value: 0.0014365540563265368
diff-ci: [23.101471736420166, 96.85309892416026]
dim-result:
   三线:False
   二线:False
   四线+:False
   一线:False
   M:False
   F:False
   Ios:True
   Android:False

  • 实验13天,收集到实验组数据4112,对照组4113,共计8225。
  • 实验过程无异常,实验组人均购买金额为3061元,较对照组提高60元
  • 整体上,实验组的提升是显著的,且提升范围在[23, 97]元之间
  • 通过维度下钻,发现实验组仅在Ios设备用户有显著提升

概率类指标实验模拟

实验前准备

  • 背景:某音乐app想通过优化功能提示提高用户功能使用率。
  • 实验前设定
    • 实验为双尾检验
    • 实验分流为50%/50%
    • 显著性水平为5%
    • 检验功效为80%
代码语言:javascript
复制
# 实验设定
alpha=0.05
power=0.8
beta=1-power

确定目标和假设

  • 目标:提高【把喜欢的音乐加入收藏夹】功能的使用率
  • 假设:用户从未使用过这个功能,且播放同一首歌到达4次时,在播放第5次进行弹窗提醒可以把喜欢的音乐加入收藏夹

确定指标

  • 评价指标:【把喜欢的音乐加入收藏夹】功能的使用率
  • 护栏指标:样本比例、特征分布一致

确定实验单位

  • 用户ID

样本量估算

  • 模拟历史样本
代码语言:javascript
复制
# 假设用户的购买金额服从正态分布
# 模拟过去一段时间的用户【把喜欢的音乐加入收藏夹】
np.random.seed(1)
collect=stats.bernoulli.rvs(0.02, size=20000, random_state=0)
plt.hist(collect, 30, density=True)
plt.show()

output_33_0

代码语言:javascript
复制
# 输出当前【把喜欢的音乐加入收藏夹】功能的使用率
print(collect.mean())
# 计算历史数据的波动区间,并假设此次提升高于最大波动上限
print(prob_cal_ci(0.02, 20000))
代码语言:javascript
复制
0.0197
[0.01805973464591045, 0.02194026535408955]
  • 依据提升情况计算样本量
代码语言:javascript
复制
# 当前转化率为0.02,波动上限为0.0219。
# 假设此次实验能提高使用率至0.022
p1=0.02
p2=0.022

n1=n2=prob_cal_sample_third(p1, p2)
print(2*n1)
代码语言:javascript
复制
161276

随机分组

  • CR法

测试时间的估算

代码语言:javascript
复制
# 假设每天符合条件用户流量1.7w,且用户在周终于周末的听音乐行为不一致,因此至少包含一周的时间
test_time=max(math.ceil(2*n1/17000), 7)
print(test_time)
代码语言:javascript
复制
10

实施测试

  • 测试过程无明显异常
  • 模拟实验数据产生,并在结束时收集数据
代码语言:javascript
复制
# 自定义数据
fake = Faker('zh_CN')
class MyProvider(BaseProvider):
    def myCityLevel(self):
        cl = ["一线", "二线", "三线", "四线+"]
        return cl[randint(0, len(cl) - 1)]
    def myGender(self):
        g = ['F', 'M']
        return g[randint(0, len(g) - 1)]
    def myDevice(self):
        d = ['Ios', 'Android']
        return d[randint(0, len(d) - 1)]
fake.add_provider(MyProvider)

# 构造假数据,模拟实验过程产生的样本数据的特征
uid=[]
cityLevel=[]
gender=[]
device=[]
age=[]
activeDays=[]
for i in range(161280):
    uid.append(i+1)
    cityLevel.append(fake.myCityLevel())
    gender.append(fake.myGender())
    device.append(fake.myDevice())
    age.append(fake.random_int(min=18, max=45)) # 年龄分布
    activeDays.append(fake.random_int(min=0, max=7)) # 近7日活跃分布
    
raw_data= pd.DataFrame({'uid':uid,
                        'cityLevel':cityLevel,
                        'gender':gender,
                        'device':device,
                        'age':age,
                        'activeDays':activeDays,
                       })

raw_data.head()

image-20230206155348234

代码语言:javascript
复制
# 数据随机切分,模拟实验分流
test, control= train_test_split(raw_data.copy(), test_size=.5, random_state=0)
# 模拟用户收藏转化率
test['collect']=stats.bernoulli.rvs(0.023, size=test.shape[0], random_state=0)
control['collect']=stats.bernoulli.rvs(0.02, size=control.shape[0], random_state=0)
# 数据拼接,模拟数据收集结果
test['flag'] = 'test'
control['flag'] = 'control'
df = pd.concat([test, control])

分析测试结果

  • 样本比例合理性检验
代码语言:javascript
复制
# 查看样本比例
sns.countplot(x='flag', data=df)
plt.show()

# 查看离散变量的分布
fig, ax =plt.subplots(1, 3, constrained_layout=True, figsize=(12, 3))
for i, x in enumerate(['cityLevel', 'gender', 'device']):
    sns.countplot(x=x, data=df, hue='flag', ax=ax[i])
plt.show()

# 查看连续变量的分布
fig, ax =plt.subplots(1, 3, constrained_layout=True, figsize=(12, 3))
for i, x in enumerate(['age', 'activeDays', 'collect']):
    sns.histplot(x=x, data=df, hue='flag', ax=ax[i])
plt.show()

output_43_0

output_43_1

output_43_2

代码语言:javascript
复制
# 检验样本比例一致性
n1=control.size
n2=test.size
p1=p2=0.5
two_sample_proportion_test(n1, n2, p1, p2)
代码语言:javascript
复制
两样本比例校验: 通过
  • 样本特征一致性校验
代码语言:javascript
复制
# 检验特征分布一致性
cols=['cityLevel', 'gender', 'device', 'age', 'activeDays']
feature_dist_ks(cols, test, control)
代码语言:javascript
复制
cityLevel: 相似
gender: 相似
device: 相似
age: 相似
activeDays: 相似
  • 显著性检验
代码语言:javascript
复制
# 显著性检验
count1=test['collect'].sum()
nobs1=test['collect'].size
count2=control['collect'].sum()
nobs2=control['collect'].size

prob_cal_significant(count1, nobs1, count2, nobs2)
代码语言:javascript
复制
(3.8761435754191123,
 0.00010612507775057984,
 [0.0013796298310413291, 0.004202600259759636])

  • p值小于5%,置信区间不包含0。因此整体上可以认为此次优化有助于提高【把喜欢的音乐加入收藏夹】功能的使用率。
  • 但是需要注意置信区间最小提升为0.0014,而在自然波动的最大提升是0.0019(0.0219-0.02),所以此次提升有可能在自然波动范围内,可能存在业务不显著,需要额外关注。
  • 拓展-维度下钻分析
代码语言:javascript
复制
# 进行维度下钻分析,采用BH法进行多重检验校正
feature=[]
value=[]
pvaules=[]
for x in ['cityLevel', 'gender', 'device']:
    for i in df[x].unique():
        feature.append(x)
        value.append(i)
        # 构造细分维度的样本
        te=test[test[x]==i]
        co=control[control[x]==i]
        # 计算细分维度的p值
        c1=te['collect'].sum()
        n1=te['collect'].size
        c2=co['collect'].sum()
        n2=co['collect'].size
        p=prob_cal_significant(c1, n1, c2, n2)[1]
        pvaules.append(p)
    
df_multiple=pd.DataFrame({'feature':feature,
                        'value':value,
                        'pvaules':pvaules
                       })
df_multiple

image-20230206155415768

代码语言:javascript
复制
# 多重检验校正
print(multiple_tests_adjust(df_multiple['pvaules']))
df_multiple['pvaules_correct']=multiple_tests_adjust(df_multiple['pvaules'])[1]
df_multiple['reject']=multiple_tests_adjust(df_multiple['pvaules'])[0]
df_multiple
代码语言:javascript
复制
(array([False, False, False,  True,  True,  True,  True,  True]), array([7.60220226e-01, 7.54367218e-02, 1.49044597e-01, 3.53217899e-05,
       1.77798888e-02, 1.10151024e-02, 1.10151024e-02, 1.97199451e-02]), 0.00625)

image-20230206155435070

维度下钻发现,一线、二线和四线+城市提升不显著

实验报告

代码语言:javascript
复制
# 关键数据展示

# 样本及均值
print('control:' ,f'sample {control.shape[0]} / mean:{control.collect.mean()}')
print('test:' ,f'sample {test.shape[0]} / mean:{test.collect.mean()}')
# 实验周期
print('times:', test_time)
# diff
print('diff:', test['collect'].mean()-control['collect'].mean())
# p值
print('p-value:', prob_cal_significant(count1, nobs1, count2, nobs2)[1])
# diff-置信区间
print('diff-ci:', prob_cal_significant(count1, nobs1, count2, nobs2)[2])
# 维度下钻结果
print('dim-result:')
for i,v in zip(df_multiple.value,df_multiple.reject):
    print(' '*2,f'{i}:{v}')
代码语言:javascript
复制
control: sample 80640 / mean:0.019952876984126983
test: sample 80640 / mean:0.022743055555555555
times: 10
diff: 0.002790178571428572
p-value: 0.00010612507775057984
diff-ci: [0.0013796298310413291, 0.004202600259759636]
dim-result:
   二线:False
   四线+:False
   一线:False
   三线:True
   F:True
   M:True
   Android:True
   Ios:True

  • 实验10天,收集到实验组数据80640,对照组80640,共计161280。
  • 实验过程无异常,实验组人均收藏率为0.023,较对照组提高0.003
  • 整体上,实验组的提升是显著的,且提升范围在[0.001, 0.004]之间。但可能存在业务不显著,需要额外关注
  • 通过维度下钻,发现实验组在一线、二线和四线+城市提升不显著

总结

现在,关于均值类和概率类的所有实验细节和模拟实战都已结束,相信大家对如何科学地进行A/B试验已经了然于胸了吧~

共勉~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-10-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 HsuHeinrich 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • AB试验(七)利用Python模拟A/B试验
    • 均值类指标实验模拟
      • 实验前准备
      • 确定目标和假设
      • 确定指标
      • 确定实验单位
      • 样本量估算
      • 随机分组
      • 测试时间的估算
      • 实施测试
      • 分析测试结果
      • 实验报告
    • 概率类指标实验模拟
      • 实验前准备
      • 确定目标和假设
      • 确定指标
      • 确定实验单位
      • 样本量估算
      • 随机分组
      • 测试时间的估算
      • 实施测试
      • 分析测试结果
      • 实验报告
    • 总结
    相关产品与服务
    腾讯云服务器利旧
    云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档