前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >GEE代码条带问题——sentinel-1接缝处理的问题

GEE代码条带问题——sentinel-1接缝处理的问题

作者头像
此星光明
发布2024-03-08 09:21:13
1410
发布2024-03-08 09:21:13
举报

问题

我有兴趣确定 NDVI 损失最大的年份。我创建了一个函数来收集所有陆地卫星图像并应用预处理。当我导出结果以识别 NDVI 损失最大年份时,生成的数据产品与陆地卫星场景足迹有可怕的接缝线。造成这种情况的原因是什么以及如何调整代码?

sentinel1数据影像拼接产生的条带问题的主要原因有以下几点:

1. 数据采集模式:sentinel1卫星采用合成孔径雷达(SAR)技术进行数据采集,其数据采集模式包括Stripmap、Interferometric Wide Swath(IW)和Extra Wide Swath(EW)等,这些不同的模式下数据的采集方式和分辨率不同,可能导致拼接后出现条带问题。

2. 不同轨道数据拼接:sentinel1卫星的数据采集是通过不同的轨道进行的,不同轨道之间可能存在位置偏差和分辨率差异,当将这些数据拼接在一起时,由于数据之间的差异会导致条带问题的出现。

3. 数据预处理:在数据拼接之前,需要进行预处理操作,如辐射校正、大气校正、地形校正等,但不同数据之间预处理时所采用的方法和参数可能不同,这也会导致拼接后的数据出现条带问题。

4. 大气湿度和地形的影响:sentinel1卫星的雷达信号受大气湿度和地形的影响较大,不同区域和不同时间的大气湿度和地形情况可能存在差异,当将这些数据拼接在一起时,可能会导致条带问题的出现。

综上所述,sentinel1数据影像拼接产生的条带问题的主要原因包括数据采集模式、不同轨道数据拼接、数据预处理和大气湿度、地形等因素的影响。

代码:

代码语言:javascript
复制
var countries = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017"),
    studyArea = ee.FeatureCollection("projects/mangrovescience/SDG_Ghana/Gold_Mining/StudyAreaSubset"),
    minesYear = ee.Image("projects/mangrovescience/SDG_Ghana/Gold_Mining/Ghana_MinesRF_30m_MaxYear3YrAvg2019Full");
//=====================================================================================================================
//                                        MIT - NASA - University of Maryland (ESSIC)
// Remote Sensing of Land Cover and Ecosystems: Country-level Ecosystem Extent and Change Mapping in Sub-Saharan Africa
//                                                  
// Project: Small-scale Gold Mining in Ghana 
// Code: Ghana NDVI Anomaly Timeline
// Written by: Amanda Payton, NASA Goddard 
// Edited by: Abigail Barenblitt NASA Goddard and University of Maryland 
// Co-authors: Daniel Wood, MIT; Lola Fatoyinbo, NASA Goddard; David Lagomasino, East Carolina University
// Objective: This code identifies the year of highest NDVI decrease per pixel, 
//            creates an image to display the year, exports the image, and calculates the area per year.

//=====================================================================================================================


//=======================================================================================
//STEP 1: Create a collection of Landsat Images 
//=======================================================================================

//import the random forest classification of mines from script one
var rf_classification = ee.Image('projects/ee-pbaltezar91/assets/GHA2023_ASSETS/5_Ghana_classRF_30m2VarSplit_30Trees2010-01-01_2023-12-30')
var maxYrDeriv = ee.Image('projects/ee-pbaltezar91/assets/GHA2023_ASSETS/7_GHA_MinesRF_30m_Max3YrAvg_2000_2023')
Map.addLayer(maxYrDeriv)
Map.addLayer(rf_classification)

//=======================================================================================
//STEP 1: Create a collection of Landsat Images 
//=======================================================================================
//This will assemble Landsat imagery from 2002-2023 and harmonize imagery from
//Landsat 5,7, & 8

//Define region of interest 
//--------------------------
//var assetId = 'projects/ee-pbaltezar91/assets/GHA2023_ASSETS/'//Edit to your local folder
var region = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017").filterMetadata("country_na","equals","Ghana"); //country border of Ghana
var countryCode = 'GHA'
var bounds = region.geometry().bounds()
Map.addLayer(bounds,null, 'Study Area Bounds')
Map.centerObject(bounds,10)
// Define years and dates to include in landsat image collection
//---------------------------------------------------------------
var startYear = 2002;         //what year do you want to start the time series 
var endYear   = 2023;         //what year do you want to end the time series
var startJulian  = 0;      //what is the beginning of date filter | DOY
var endJulian    = 153;      //what is the end of date filter | DOY

var crs = 'EPSG:4326'//WGS 84 UTM zone 30 N, between 6°W and 0°W, northern hemisphere between equator and 84°N, onshore and offshore.
var cloud = 50

// Visualize Landsat Observation Image
var obsstart = '2010-01-01'; //date to start observation period
var obsend = '2023-12-30'; //date to end observation period

//#####################################
// Function to mask clouds
// Assumes the image is a Landsat C2 image
function maskClouds(image) {
  // Bits 3 and 4 are cloud and cloud shadow, respectively.
  var cloudsBitMask = (1 << 3);
  var cloudShadowBitMask = (1 << 4);
  // Get the pixel QA band.
  var qa = image.select('QA_PIXEL');
  // Both flags should be set to zero, indicating clear conditions.
  var mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0)
                 .and(qa.bitwiseAnd(cloudsBitMask).eq(0));
  return image.updateMask(mask);
}
//#####################################
// Functions to apply scaling factors for C2 imagery
function applyScaleFactors_L8(image) {
  var opticalBands = image.select('SR_B.*').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0).float();
  return image.addBands(opticalBands, null, true)
              .addBands(thermalBands, null, true);}
function applyScaleFactors_L7L5(image) {
  var opticalBands = image.select('SR_B.*').multiply(0.0000275).add(-0.2);
  var thermalBand = image.select('^ST_B.*').multiply(0.00341802).add(149.0).float();
  return image.addBands(opticalBands, null, true)
              .addBands(thermalBand, null, true);}
//#####################################
//Function for acquiring Landsat SR image collection
function getLandsatImageCollection(studyArea,startDate,endDate,startJulian,endJulian,cloud){
  var ls;var l5SR;var l7SR;var l8SR;var l9SR;var out;
  
  var sensorBandDictLandsatSR =ee.Dictionary({L9: ee.List([1,2,3,4,5,6,8,17,18]),
                        L8 : ee.List([1,2,3,4,5,6,8,17,18]),
                        L7 : ee.List([0,1,2,3,4,5,8,17,18]),
                        L5 : ee.List([0,1,2,3,4,5,8,17,18])
  });
  var bandNamesLandsatSR = ee.List(['SR_B1','SR_B2','SR_B3','SR_B4','SR_B5','SR_B6','ST_B10','QA_PIXEL', 'QA_RADSAT']);
  
  l5SR = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L5'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L7L5);
  
  l7SR = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L7'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L7L5);

  l8SR = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L8'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L8);

  l9SR = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
      .filterDate(startDate,endDate)
      .filter(ee.Filter.calendarRange(startJulian,endJulian))
      .filterBounds(studyArea)
      .filter(ee.Filter.lte('CLOUD_COVER_LAND',cloud))
      .select(sensorBandDictLandsatSR.get('L9'),bandNamesLandsatSR)
      .map(maskClouds)
      .map(applyScaleFactors_L8);
      
  ls = ee.ImageCollection(l5SR.merge(l7SR).merge(l8SR).merge(l9SR));

  out = ls.set('system:time_start', ls.get('system:time_start')) ;
  return out.select('^SR_B.*');
}
//#####################################
// Create a function that adds a year band to the collection
var addYear = function(image){
  var date = ee.Date(image.get('system:time_start')).get('year');
  var year = ee.Image(date).subtract(2000).rename('Year').byte(); //get Year of Image (after 2000)
  return image.addBands(year);}; //add as band
//############# End of Functions ########################

Create the dates for temporal filtering
if(startJulian > endJulian){endJulian = endJulian + 365}

var startDate = ee.Date.fromYMD(startYear,1,1).advance(startJulian,'day');
var endDate = ee.Date.fromYMD(endYear,1,1).advance(endJulian,'day');
print(startDate, endDate, 'Study Time Period');


//Apply functions
//---------------
var collectionSR = getLandsatImageCollection(region,startDate,endDate,startJulian,endJulian,cloud)
var collectionSR_wIndex = collectionSR.map(function(i){
  var ndvi = i.normalizedDifference(['SR_B4', 'SR_B3']).rename('NDVI')
  return i.addBands(ndvi)
}); //add vegetation indices
var collection_IndexYear = collectionSR_wIndex.map(addYear); //add year band

Map.centerObject(region,7)
Map.setOptions('SATELLITE')
Map.addLayer(ee.Image().byte().paint(region,3,3),{palette:'yellow'},'Study Area Region: '+countryCode,false)
Map.addLayer(collectionSR_wIndex,{bands:['SR_B5','SR_B4','SR_B3'],gamma:1.00,'min': 0.05,'max': [0.30,0.40,0.40]},'Landsat Composite',false)

//=======================================================================================
//STEP 2: Create Image of Greatest NDVI Decrease Per Year
//=======================================================================================

//loop through image collection and get a maximum image for each year
var maxCollection = ee.ImageCollection(ee.List.sequence(startYear,endYear).map(function(year){ 
  return collection_IndexYear.filter(ee.Filter.calendarRange(year,year,'year')).max().set('Year', year);
}));


var maxList = ee.List(maxCollection.toList(maxCollection.size())); //convert image collection to list
//print('Max List of Annual Images',maxList);


//function to get 3-year moving average
var myFunction = function(i){
    var nextYear = ee.Number(i).add(1);
    var previousYear = ee.Number(i).add(-1)
    
    var nextY = ee.Image(maxList.get(nextYear)); // next image in collection
    var thisYear = ee.Image(maxList.get(i)); //current image in collection
    var previousY =  ee.Image(maxList.get(previousYear));//previous year in collection
    
    
    var avg = thisYear.select('NDVI').add(nextY.select('NDVI')).add(previousY.select('NDVI')).divide(3) // Calculate average of this image and next image in collection
    .multiply(-1).rename('NDVI_avg'); //multiply by -1 to flip average (we want loss not gain)
  return ee.Image(maxList.get(i)).addBands(avg);    // Add Moving average band 
  };

var listSequence = ee.List.sequence(1,maxList.size().subtract(2));
var avgCollection = ee.ImageCollection(listSequence.map(myFunction));// AS IMAGE COLLECTION


var avgList = ee.List(avgCollection.toList(avgCollection.size()));// AS LIST


//function to get derivative of NDVI curve (max change between years)
var myFunction2 = function(i){
    var aaa = ee.Number(i).add(1);
    var bbb = ee.Image(avgList.get(aaa)); // next image in collection
    var ccc = ee.Image(avgList.get(i)); //current image in collection
    var avg = bbb.select('NDVI_avg').subtract(ccc.select('NDVI_avg')).rename('NDVI_deriv');
  return  ee.Image(avgList.get(i)).addBands(avg);
};

var listSequence2 = ee.List.sequence(0,avgList.size().subtract(2));
var derivCollection = ee.ImageCollection(listSequence2.map(myFunction2)); // AS IMAGE COLLECTION

//Reduce collection to get year of maximum derivative
var derivMosaic = derivCollection.qualityMosaic('NDVI_deriv') ; // Quality Mosaic based on max derivative

var derivativeMaxYear = derivMosaic.select('Year'); // select the Year of max derivative 
// ----------------------Ghana_MinesRF_30m_MaxYear3YrAvg
// Export.image.toAsset({
//     image: derivativeMaxYear,
//     description: '7_'+countryCode+'_'+'MinesRF_30m_Max3YrAvg_'+startYear+'_'+endYear,
//     assetId: assetId+'7_'+countryCode+'_'+'MinesRF_30m_Max3YrAvg_'+startYear+'_'+endYear,
//     region: region,
//     crs:crs,
//     scale: 30,
//     maxPixels: 1e13
//   });
// //=======================================================================================
// //STEP 3: Get Area Per Year 2007-2017 and Chart
// //=======================================================================================

var years = ee.List.sequence(1,23,1);

var getArea = ee.FeatureCollection(years.map(function(i){
    var year = ee.Number(i);              //is this where we update?
    var def = maxYrDeriv.eq(year);//add derivative Max Year get new output to export later
    var defArea = def.multiply(ee.Image.pixelArea()).divide(10000).reduceRegion({
      reducer:ee.Reducer.sum(),
      geometry:region,
      scale: 100,
      maxPixels:1e13,
      tileScale: 16
      }).get('Year');
  return ee.Feature(null).set('Area', defArea).set('Year',year);
}));
print(getArea)
//Construct Bar Chart

var options = {
  title: 'Mining Area by Year',
  vAxis: {title: 'Area in Hectares'},
  legend: {position: 'none'},
  hAxis: {
    title: 'Year',
    logScale: false
  }
};

var areaChart = getArea.select(['Year','Area'])

print(areaChart.getInfo())

var chart = ui.Chart.feature.byFeature(areaChart,'Year');
var chart = chart.setChartType('ColumnChart')
var chart = chart.setOptions(options)
print(chart)



//=======================================================================================
//STEP 4: Map results
//=======================================================================================
//Set up visualization
var palette = ['#4B0082', '#9400D3',  '#0000FF', '#00FF00', '#FFFF00', '#FF7F00', '#FF0000'];
var yodVizParms = {
  min: 7,
  max: 17,
  palette: palette
};

// Map of Loss Year based on Maximum NDVI Derivative

//Get mines and clean
var final_mines = rf_classification.select(0).eq(1).selfMask();

//Set Variables
var mines = final_mines;
var scale = 30;

var minesMaxYear = derivativeMaxYear.updateMask(mines).clip(studyArea);

// Map of Loss Year based on Maximum NDVI Derivative
Map.addLayer(minesMaxYear,yodVizParms,'Max Derivative Year',true);


//Observation Period Landsat Imagery
Map.addLayer(collection_IndexYear.filterDate(obsstart,obsend).median().clip(region), {bands: ['B3', 'B2', 'B1'], min:200, max:1500}, 'Landsat Image', false);

//NDVI Average Collection
Map.addLayer(avgCollection.select("NDVI_avg"), {}, 'Average Collection', false);

//Derivative NDVI Collection
Map.addLayer(derivCollection.select('NDVI_deriv'), {}, 'Derivative Collection', false)


// =======================================================================================
// STEP 5: Export layers
// =======================================================================================

//Export Area Table
print('Area Collection',getArea);
Export.table.toDrive({
  collection:getArea, 
  description: "Ghana_Area_RF"
  });

//Export mines classification image
Export.image.toDrive({
  image: minesMaxYear.clip(studyArea),
  description: 'Ghana_MinesRF_30m_MaxYear3YrAvg2019Full',
  region: region,
  scale: scale,
  maxPixels: 1e13
});

//****************************************************************************************************************************

//END CODE///

真正代码

代码语言:javascript
复制
var roiId = 'projects/mangrovescience/SDG_Ghana/Gold_Mining/StudyAreaSubset';
var roi = ee.FeatureCollection(roiId);

var ic = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  .filterBounds(roi)
  .select(['SR_B4', 'SR_B5'], ['red', 'nir']);

// Simplifies the dates used in the original script.
var startYear = 2013;
var endYear = 2023;

var years = ee.List.sequence(startYear, endYear, 1); // [2013, ..., 2023]

ic = ic.filter(ee.Filter.calendarRange(startYear, endYear, 'year'));

function scaleImages(image) {
  var scale = 0.0000275;
  var offset = -0.2;
  return image
    .multiply(scale)
    .add(offset)
    .copyProperties(image, ['system:time_start']);
}

function computeNDVI(image) {
  var ndvi = image.normalizedDifference(['nir', 'red']).rename('ndvi');
  return ndvi.copyProperties(image, ['system:time_start']);
}

// Scales images and calculates the NDVI
var ndviCol = ic
  .map(scaleImages)
  .map(computeNDVI);

// For each year in "years", obtain an image representing the max NDVI value.
function getAnnualMaxImages(years) {
  var images = years.map(function(y) {
    y = ee.Number(y);
    
    var imagesYearY = ndviCol.filter(ee.Filter.calendarRange(y, y, 'year'));
    var date = ee.Date.fromYMD(y, 1, 1).millis();
    var maxImage = imagesYearY.max().set('system:time_start', date, 'year', y);
    
    return maxImage;
  });
  
  return ee.ImageCollection.fromImages(images);
}

var maxImages = getAnnualMaxImages(years);


// Get 3-year moving average and adds the year band.
var maxImagesList = maxImages.toList(maxImages.size());

var n = ee.Number(endYear - startYear);
var indices = ee.List.sequence(0, n.subtract(1), 1);

var avgImages = indices.map(function(index) {
  index = ee.Number(index);
  
  var prev = index.subtract(1);
  var curr = index;
  var next = index.add(1);
  
  var prevImg = ee.Image(maxImagesList.get(prev));
  var currImg = ee.Image(maxImagesList.get(curr));
  var nextImg = ee.Image(maxImagesList.get(next));
  
  var date = currImg.date().millis();
  var year = currImg.date().get('year');
  
  var avgImg = ee.ImageCollection([prevImg, currImg, nextImg]).mean();
  
  var yearBand = ee.Image(year)
    .subtract(2000)
    .toUint8()
    .rename('year')
    .updateMask(avgImg.mask());
  
  return avgImg
    .addBands(yearBand)
    .set('system:time_start', date, 'index', index);
});

avgImages = ee.ImageCollection.fromImages(avgImages);

// Remove the first and last year from the analysis - due to the 3-years moving
// average.
var minMaxIndices = ee.List(indices).reduce(ee.Reducer.minMax());
minMaxIndices = ee.Dictionary(minMaxIndices).values();

avgImages = avgImages
  .filter(ee.Filter.inList('index', minMaxIndices).not());

// It applies the reducer to obtain the lowest average for each pixel and the 
// year in which this lowest average was detected.
var result = avgImages
  .reduce(
    ee.Reducer.min(2).setOutputs(['ndvi_avg_min', 'year_of_ndvi_avg_min'])
  );
  
// Uncomment to check the results.
Map.addLayer(result.select(0), { min: 0, max: 0.8 });
Map.addLayer(result.select(1), { min: 13, max: 22 });

// Calculates the area, in square meters, for each year within the study area.
var pixelArea = ee.Image.pixelArea()
  .addBands(result.select('year_of_ndvi_avg_min'));

var areaByYear = result.reduceRegion({
  reducer: ee.Reducer.sum().group({
    groupField: 1,
    groupName: 'year'
  }),
  geometry: roi,
  scale: 30,
  maxPixels: 1e13
});

areaByYear = ee.List(areaByYear.get('groups'));
var areaByYearList = areaByYear.map(function(item) {
  var dict = ee.Dictionary(item); // { sum: ..., year: ... }
  var year = ee.Number(dict.get('year')).format(); // "13"
  var area = ee.Number(dict.get('sum')); // 123.456
  return ee.List([year, area]); // ["13", 123.456]
});

// { year: area } dictionary.
var theEnd = ee.Dictionary(areaByYearList.flatten());
print(theEnd)

函数

qualityMosaic(qualityBand)

Composites all the images in a collection, using a quality band as a per-pixel ordering function.

使用质量带作为每个像素的排序函数,合成图像集中的所有图像。

Arguments:

this:collection (ImageCollection):

The collection to mosaic.

qualityBand (String):

The name of the quality band in the collection.

Returns: Image

问题图

接缝图

github

如果想处理条带的结果

GitHub - xingguangYan/Landsat-5-NDWI-image-restoration

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 问题
  • 代码:
  • 真正代码
  • 函数
    • qualityMosaic(qualityBand)
      • Arguments:
      • Returns: Image
  • 问题图
  • github
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档