前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >简单的神经网络

简单的神经网络

作者头像
@小森
发布2024-05-16 15:13:46
940
发布2024-05-16 15:13:46
举报
文章被收录于专栏:xiaosenxiaosen

一、softmax的基本概念

我们之前学过sigmoid、relu、tanh等等激活函数,今天我们来看一下softmax。

先简单回顾一些其他激活函数:

  1. Sigmoid激活函数:Sigmoid函数(也称为Logistic函数)是一种常见的激活函数,它将输入映射到0到1之间。它常用于二分类问题中,特别是在输出层以概率形式表示结果时。Sigmoid函数的优点是输出值限定在0到1之间,相当于对每个神经元的输出进行了归一化处理。
  2. Tanh激活函数:Tanh函数(双曲正切函数)将输入映射到-1到1之间。与Sigmoid函数相比,Tanh函数的中心点在零值附近,这意味着它的输出是以0为中心的。这种特性可以在某些情况下提供更好的性能。
  3. ReLU激活函数:ReLU(Rectified Linear Unit)函数是当前非常流行的一个激活函数,其表达式为f(x)=max(0, x)。ReLU函数的优点是计算简单,能够在正向传播过程中加速计算。此外,ReLU函数在正值区间内梯度为常数,有助于缓解梯度消失问题。但它的缺点是在负值区间内梯度为零,这可能导致某些神经元永远不会被激活,即“死亡ReLU”问题。

Softmax函数是一种在机器学习中广泛使用的函数,尤其是在处理多分类问题时。它的主要作用是将一组未归一化的分数转换成一个概率分布。Softmax函数的一个重要性质是其输出的总和等于1,这符合概率分布的定义。这意味着它可以将一组原始分数转换为概率空间,使得每个类别都有一个明确的概率值。

  • 二分类问题选择sigmoid激活函数
  • 多分类问题选择softmax激活函数

二、交叉熵损失函数

交叉熵损失函数的公式可以分为二分类和多分类两种情况。对于二分类问题,假设我们只考虑正类(标签为1)和负类(标签为0)在多分类问题中,交叉熵损失函数可以扩展为−∑𝑖=1𝐾𝑦𝑖⋅log⁡(𝑝𝑖)−∑i=1K​yi​⋅log(pi​),其中𝐾K是类别的总数,( y_i )是样本属于第𝑖i个类别的真实概率(通常用one-hot编码表示),而𝑝𝑖pi​是模型预测该样本属于第( i )个类别的概率。

代码语言:javascript
复制
import torch
from torch import nn

# 确定随机数种子
torch.manual_seed(7)
# 自定义数据集
X = torch.rand((7, 2, 2))
target = torch.randint(0, 2, (7,))

定义网络结构

  • 一层全连接层 + Softmax层
  • x1𝑥1,x2𝑥2,x3𝑥3,x4𝑥4为 X
  • o1𝑜1,o2𝑜2,o3𝑜3为 target
代码语言:javascript
复制
class LinearNet(nn.Module):
    def __init__(self):
        super(LinearNet, self).__init__()
        # 定义一层全连接层
        self.dense = nn.Linear(4, 3)
        # 定义Softmax
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        y = self.dense(x.view((-1, 4)))
        y = self.softmax(y)
        return y

net = LinearNet()
  •  nn.Softmax(dim=1)用于计算输入张量在指定维度上的softmax激活。dim=1表示沿着第二个维度(即列)进行softmax操作。

定义损失函数和优化函数

  • torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean')
  • 衡量模型输出与真实标签的差异,在分类时相当有用。
  • 结合了nn.LogSoftmax()和nn.NLLLoss()两个函数,进行交叉熵计算。
代码语言:javascript
复制
loss = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)  # 随机梯度下降法

训练模型

代码语言:javascript
复制
for epoch in range(70):
    train_l = 0.0
    y_hat = net(X)
    l = loss(y_hat, target).sum()

    # 梯度清零
    optimizer.zero_grad()
    # 自动求导梯度
    l.backward()
    # 利用优化函数调整所有权重参数
    optimizer.step()

    train_l += l
    print('epoch %d, loss %.4f' % (epoch + 1, train_l))

三、自动微分模块

torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False)  :自动求取梯度

  • grad_tensors:多梯度权重
  • create_graph:创建导数计算图,用于高阶求导
  • retain_graph:保存计算图
  • tensors:用于求导的张量,如 loss
代码语言:javascript
复制
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)

a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)

y.backward(retain_graph=True)

 注意点:

  1. 梯度不自动清零
  2. 依赖于叶子节点的节点,requires_grad默认为True
  3. 叶子节点不可执行in-place

神经网络全连接层: 每个神经元都与前一层的所有神经元相连接。全连接层通常用于网络的最后几层,它将之前层(如卷积层和池化层)提取的特征进行整合,以映射到样本标记空间,即最终的分类或回归结果。

关于loss.backward()方法:

主要作用就是计算损失函数对模型参数的梯度,loss.backward()实现了反向传播算法,它通过链式法则计算每个模型参数相对于最终损失的梯度。这个过程从输出层开始,向后传递到输入层,逐层计算梯度。

过程:得到每个参数相对于损失函数的梯度,这些梯度信息会存储在对应张量的.grad属性中。loss.backward本身不负责更细权重,但它为权重更新提供了梯度值,方便配合optimizer.step()来更新参数。

前向传播过程中,数据从输入层流向输出层,并生成预测结果;而在反向传播过程中,误差(即预测值与真实值之间的差距,也就是损失函数的值)会从输出层向输入层传播,逐层计算出每个参数相对于损失函数的梯度。这些梯度指示了如何调整每一层中的权重和偏置,以最小化损失函数。

  • 损失函数衡量了当前模型预测与真实情况之间的不一致程度,而梯度则提供了损失函数减少最快的方向。

建立一个简单的全连接层:

代码语言:javascript
复制
import torch
import torch.nn as nn

# 定义一个简单的全连接层模型
class SimpleFC(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleFC, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, x):  
        return self.fc(x)

# 创建输入数据和目标输出
input_data = torch.tensor([[1.0, 2.0, 3.0]])
target_output = torch.tensor([[4.0, 5.0]])

# 实例化模型、损失函数和优化器
model = SimpleFC(input_size=3, output_size=2)
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 前向传播
output = model(input_data)

# 计算损失
loss = criterion(output, target_output)

# 反向传播
loss.backward()

# 更新参数
optimizer.step()

当调用loss.backward()时,PyTorch会自动计算损失值关于模型参数的梯度,并将这些梯度存储在模型参数的.grad属性中。然后优化器(torch.optim.SGD)可以使用这些梯度来更新模型参数,以最小化损失函数。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2024-05-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、softmax的基本概念
  • 二、交叉熵损失函数
  • 三、自动微分模块
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档