利用 Python 优雅地可视化数据

最近看《机器学习系统设计》...前两章。学到了一些用 Matplotlib 进行数据可视化的方法。在这里整理一下。

声明:由于本文的代码大部分是参考书中的例子,所以不提供完整代码,只提供示例片段,也就是只能看出某一部分用法,感兴趣的需要在自己的数据上学习测试。

最开始,当然还是要导入我们需要的包:

# -*- coding=utf-8 -*-
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
import numpy as np
import itertools

1. 画散点图

画散点图用 plt.scatter(x,y)。画连续曲线在下一个例子中可以看到,用到了 plt.plot(x,y)

plt.xticks(loc,label) 可以自定义 x 轴刻度的显示,第一个参数表示的是第二个参数 label 显示的位置 loc。

plt.autoscale(tight=True) 可以自动调整图像显示的最佳化比例 。

plt.scatter(x,y)
plt.title("Web traffic")
plt.xlabel("Time")
plt.ylabel("Hits/hour")
plt.xticks([w*7*24 for w in range(10)],['week %i' %w for w in range(10)])
plt.autoscale(tight=True)
plt.grid()
##plt.show()

画出散点图如下:

2. 多项式拟合并画出拟合曲线

## 多项式拟合
fp2 = np.polyfit(x,y,3)
f2 = np.poly1d(fp2)

fx = np.linspace(0,x[-1],1000)
plt.plot(fx,f2(fx),linewidth=4,color='g')
## f2.order: 函数的阶数
plt.legend(["d=%i" % f2.order],loc="upper right")
plt.show()

效果图:

3. 画多个子图

这里用到的是 sklearn 的 iris_dataset(鸢尾花数据集)。

此数据集包含四列,分别是鸢尾花的四个特征:

  • sepal length (cm)——花萼长度
  • sepal width (cm)——花萼宽度
  • petal length (cm)——花瓣长度
  • petal width (cm)——花瓣宽度

这里首先对数据进行一定的处理,主要就是对特征名称进行两两排列组合,然后任两个特征一个一个做 x 轴另一个做 y 轴进行画图。

# -*- coding=utf-8 -*-
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
import numpy as np
import itertools

data = load_iris()
#print(data.data)
#print(data.feature_names)
#print(data.target)

features = data['data']
feature_names = data['feature_names']
target = data['target']
labels = data['target_names'][data['target']]

print(data.data)
print(data.feature_names)

这里有一个排列组合参考代码,最后是取出了两两组合的情况。

排列组合的结果是 feature_names_2 包含了排列组合的所有情况,它的每一个元素包含了一个排列组合的所有情况,比如第一个元素包含了所有单个元素排列组合的情况,第二个元素包含了所有的两两组合的情况......所以这里取出了第二个元素,也就是所有的两两组合的情况

feature_names_2 = []
#排列组合
for i in range(1,len(feature_names)+1):
    iter = itertools.combinations(feature_names,i)
    feature_names_2.append(list(iter))
    
print(len(feature_names_2[1]))
for i in feature_names_2[1]:
    print(i)

下面是在 for 循环里画多个子图的方法。对我来说,这里需要学习的有不少。比如

  • for i,k in enumerate(feature_names_2[1]): 这一句老是记不住。
  • 比如从列表中取出某元素所在的索引的方法:index1 = feature_names.index(k[0]),也即 index = list.index(element) 的形式。
  • 比如 for 循环中画子图的方法:plt.subplot(2,3,1+i)
  • 比如 for 循环的下面这用法:for t,marker,c in zip(range(3),">ox","rgb"):

plt.figure(1)
for i,k in enumerate(feature_names_2[1]):
    index1 = feature_names.index(k[0])
    index2 = feature_names.index(k[1])
    plt.subplot(2,3,1+i)
    for t,marker,c in zip(range(3),">ox","rgb"):        
        plt.scatter(features[target==t,index1],features[target==t,index2],marker=marker,c=c)
        plt.xlabel(k[0])
        plt.ylabel(k[1])
        plt.xticks([])
        plt.yticks([])
        plt.autoscale()
        plt.tight_layout()      
plt.show()

这里的可视化效果如下:

4. 画水平线和垂直线

比如在上面最后一幅图中,找到了一种方法可以把三种鸢尾花分出来,这是我们需要画出模型(一条直线)。这个时候怎么画呢?

下面需要注意的就是 plt.vlines(x,y_min,y_max)plt.hlines(y,x_min,x_max) 的用法。

plt.figure(2)
for t,marker,c in zip(range(3),">ox","rgb"):        
    plt.scatter(features[target==t,3],features[target==t,2],marker=marker,c=c)
    plt.xlabel(feature_names[3])
    plt.ylabel(feature_names[2])
    # plt.xticks([])
    # plt.yticks([])
    plt.autoscale()    
plt.vlines(1.6, 0, 8, colors = "c",linewidth=4,linestyles = "dashed")
plt.hlines(2.5, 0, 2.5, colors = "y",linewidth=4,linestyles = "dashed")
plt.show()  

此时可视化效果如下:

5. 动态画图

plt.ion() 打开交互模式。plt.show() 不再阻塞程序运行。

注意 plt.axis() 的用法。

plt.axis([0, 100, 0, 1])
plt.ion()

for i in range(100):
    y = np.random.random()
    plt.autoscale()
    plt.scatter(i, y)
    plt.pause(0.01)

可视化效果:

文章首发公众号: CVPy

原创声明,本文系作者授权云+社区-专栏发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏mySoul

SVG绘制饼状图

882
来自专栏AI派

Pandas可视化详解 | 轻松玩转Pandas(12)

数据分析的结果不仅仅只是你来看的,更多的时候是给需求方或者老板来看的,为了更直观地看出结果,数据可视化是必不可少的一个环节。这里带大家来看下一些常用的图形的画法...

702
来自专栏数据科学学习手札

(数据科学学习手札43)Plotly基础内容介绍

  Plotly是一个非常著名且强大的开源数据可视化框架,它通过构建基于浏览器显示的web形式的可交互图表来展示信息,可创建多达数十种精美的图表和地图,本文就将...

2484
来自专栏ml

NYOJ-------表达式求值

时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Dr.Kong设计的机器人卡多掌握了加减法运算以后,最近又学会了一些简单的函数求...

36810
来自专栏Petrichor的专栏

图像处理: 如何将 像素值 控制在 值域[0, 255]

在做计算机视觉方向项目的时候,往往需要进行图像处理。但是在此过程中,常常会遇到 对 像素值 进行 变换计算 后,像素值 超出 值域区间 [0, 255] 的情况...

814
来自专栏前端开发

[记]使用jQuery Jcrop 图像裁剪无法更换图片的坑

1303
来自专栏和蔼的张星的图像处理专栏

28. 搜索二维矩阵二分法

写出一个高效的算法来搜索 m × n矩阵中的值。 这个矩阵具有以下特性: 每行中的整数从左到右是排序的。 每行的第一个数大于上一行的最后一个整数。 样例...

512
来自专栏数据小魔方

复合饼图

今天要给大家分享的复合饼图的制作技巧! ▽ 其实这种复合饼图在数据表达与展示上与传统饼图相差无几,只是形式比较新颖,能够对局部数据突出展示,所以视觉传达效率比较...

2937
来自专栏python3

python简单脚本之概率计算

531
来自专栏冷冷

JS 对指定iframe 全屏操作

最近在搞页面全屏踩到一个坑 。。 首先要知道如果直接在iframe 页面调用requestFullScreen()是没有效果的,需要在当前iframe 的par...

1865

扫码关注云+社区