前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >TensorFlow 入门(2):使用DNN分类器对数据进行分类

TensorFlow 入门(2):使用DNN分类器对数据进行分类

原创
作者头像
谭正中
修改于 2017-07-04 01:50:11
修改于 2017-07-04 01:50:11
21.7K00
代码可运行
举报
文章被收录于专栏:谭正中的专栏谭正中的专栏
运行总次数:0
代码可运行

背景

上一篇 《TensorFlow 入门:求 N 元一次方程》根据官网的入门教程,使用基础的 API 稍作修改解决了 N 个数据的权重问题,再继续看官网后面的教程,有一篇 高级 API 入门教程教我们如何使用 DNN(深度神经网络)分类器实现对鸢尾花的分类。刚看到这篇文章的时候,中间出现了几种鸢尾花的图案,我还以为输入是图片,API 会进行图片识别,后来发现输入的训练集只是一组组特征数据(包含花萼的长度宽度和花瓣的长度宽度)对应分类,可以看做能够解决这样的一个问题:给定一组特征数据,求这组数据的分类。 和之前一样,先分析一下原文中的示例,很多文章对原文中的示例进行翻译,但是并没有举一反三,这样其实学习效果并不好,本文会在学习后使用原文的方法,解决一个新的问题。 由于作者能力有限,目前仅停留在使用阶段,先培养机器学习思维方式,对于原理部分,可以参考其他的资料。能保证的是,阅读本文不会让你过于枯燥,也不会很难,我的宗旨是用简单的语言将复杂的问题说清楚。

原文示例

原文链接在这里,我们先逐行分析一下,首先进行必要的包含工作,我对 python 不是特别熟悉,前面这 3 行我还专门去查了一下是什么含义,具体可以参考 这篇文章

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import urllib

import tensorflow as tf
import numpy as np

然后定义训练集和测试集的路径,这次的数据是以 csv 的格式加载进来:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
IRIS_TRAINING = "iris_training.csv"
IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"

IRIS_TEST = "iris_test.csv"
IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

然后进入到主函数,主函数首先是将训练集和测试集的 csv 文件下载下来:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# If the training and test sets aren't stored locally, download them.
if not os.path.exists(IRIS_TRAINING):
        raw = urllib.urlopen(IRIS_TRAINING_URL).read()
        with open(IRIS_TRAINING, "w") as f:
                f.write(raw)

if not os.path.exists(IRIS_TEST):
        raw = urllib.urlopen(IRIS_TEST_URL).read()
        with open(IRIS_TEST, "w") as f:
                f.write(raw)

下载下来的文件可以打开看看,我们打开训练集:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
120,4,setosa,versicolor,virginica
6.4,2.8,5.6,2.2,2
5,2.3,3.3,1,1
4.9,2.5,4.5,1.7,2
4.9,3.1,1.5,0.1,0
5.7,3.8,1.7,0.3,0
4.4,3.2,1.3,0.2,0
5.4,3.4,1.5,0.4,0
6.9,3.1,5.1,2.3,2
...

可以发现首行的格式看起来并不是一个表头,这个格式是有规范的,但是原文没有讲,我们继续往后看它是怎么读取的:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# Load datasets.
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
        filename=IRIS_TRAINING,
        target_dtype=np.int,
        features_dtype=np.float32)

test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
        filename=IRIS_TEST,
        target_dtype=np.int,
        features_dtype=np.float32)

TensorFlow 使用 tf.contrib.learn.datasets.base.load_csv_with_header 对 CSV 文件进行读取,它有 3 个参数:

  • filename:CSV 文件名
  • target_dtype:目标数据的类型,本例中为分类 ID,使用整形表示
  • features_dtype:特征值的类型,本例中是花萼花瓣的长宽度,使用浮点数表示

打开 load_csv_with_header 的源代码,可以看到它的实现方式:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def load_csv_with_header(filename,
                                                 target_dtype,
                                                 features_dtype,
                                                 target_column=-1):
    """Load dataset from CSV file with a header row."""
    with gfile.Open(filename) as csv_file:
        data_file = csv.reader(csv_file)
        header = next(data_file)
        n_samples = int(header[0])
        n_features = int(header[1])
        data = np.zeros((n_samples, n_features), dtype=features_dtype)
        target = np.zeros((n_samples,), dtype=target_dtype)
        for i, row in enumerate(data_file):
            target[i] = np.asarray(row.pop(target_column), dtype=target_dtype)
            data[i] = np.asarray(row, dtype=features_dtype)

    return Dataset(data=data, target=target)

这样就很清楚了,使用 load_csv_with_header 函数读取的 CSV 文件首行前两列分别表示数据组的个数和每个数据组的特征数,训练集中一共有 120 组数据,每组数据包含 4 个特征。首行的另外 3 个数据,实际上并不会读取到。具体的特征数据从第二行开始,最后一列为目标值(即训练完毕后期望的输出值),前面的 4 列为特征数据(即训练完毕后的输入值),这个 4 必须和第一行第二列相等,否则就会读取失败了。 数据读取完毕后,可以把结果打印出来看看:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
print(training_set)

Dataset(data=array([
             [ 6.4000001 ,  2.79999995,  5.5999999 ,  2.20000005],
             [ 5.        ,  2.29999995,  3.29999995,  1.        ],
             [ 4.9000001 ,  2.5       ,  4.5       ,  1.70000005],
             ...
             [ 4.80000019,  3.        ,  1.39999998,  0.1       ],
             [ 5.5       ,  2.4000001 ,  3.70000005,  1.        ]], dtype=float32),
             target=array([2, 1, 2,..., 0, 1]))

因为篇幅问题,上面省略了很多数据,可以看到和 load_csv_with_header 代码中一致,结果为一个 Dataset 结构,其中 data 为 120 组数据,每组数据包含 4 个特征值,而 target 为一个长度为 120 的数组,表示这 120 组数据的分类。 这样就完成了训练集和测试集的数据加载工作,之后创建一个 DNN 分类器:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
                                                                                        hidden_units=[10, 20, 10],
                                                                                        n_classes=3,
                                                                                        model_dir="/tmp/iris_model")

这段代码,我目前的知识还无法理解全部参数的含义,先看看第一行 real_valued_column的参数:

  • column_name 填的是"",这个我还不明白有什么作用
  • dimension 填 4,对应每组数据有 4 个特征值。

DNNClassifier的参数:

  • feature_columns:把之前创建的特征列传入,具体有什么含义还没深入理解。
  • hidden_units:每层神经元数量,跟 DNN 原理有关。
  • n_classes:目标的类型的个数,目前是 3 个。
  • model_dir:训练模型保存的路径,这个很重要。

然后要构造一个输入函数,用于将训练数据输入到 TensorFlow 中用来训练,这个函数返回 2 个 Tensor 数据,一个是大小为 [120,4]的输入数据,表示 120 组数据,每组数据包含 4 个特征值,还有就是 120 个输出数据,这 120 组数据用于训练模型。因为返回的数据是 Tensor 常量,直接打印会显示出他们的属性:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
print(x,y)

Tensor("Const:0", shape=(120, 4), dtype=float32) Tensor("Const_1:0", shape=(120,), dtype=int64)

如果想看看他们的值,可以创建一个 Session 执行一下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
sess = tf.Session()
print(sess.run([x,y]))

[array([[ 6.4000001 ,  2.79999995,  5.5999999 ,  2.20000005],
             [ 5.        ,  2.29999995,  3.29999995,  1.        ],
             [ 4.9000001 ,  2.5       ,  4.5       ,  1.70000005],
             ...
             [ 4.80000019,  3.        ,  1.39999998,  0.1       ],
             [ 5.5       ,  2.4000001 ,  3.70000005,  1.        ]], dtype=float32),
 array([2, 1, 2, 0, 0, 0, 0, 2, 1, 0, 1, 1, 0, 0, 2, 1, 2, 2, 2, 0, 2, 2, 0,
             2, ..., 0, 1])]

接下来就开始训练,使用 classifier 的 fit 函数进行训练,次数为 2000 次:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# Fit model.
classifier.fit(input_fn=get_train_inputs, steps=2000)

训练的结果会保存在之前创建 classifier 传入的 model_dir 中,本例中是"/tmp/iris_model",这是一个目录,训练结束后,可以看到该目录保存了一些数据:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
$ tree -h /tmp/iris_model
/tmp/iris_model
├── [ 178]  checkpoint
├── [4.0K]  eval
│   └── [156K]  events.out.tfevents.1493025734.dev
├── [493K]  events.out.tfevents.1493025732.dev
├── [312K]  graph.pbtxt
├── [4.0K]  model.ckpt-1.data-00000-of-00001
├── [ 721]  model.ckpt-1.index
├── [123K]  model.ckpt-1.meta
├── [4.0K]  model.ckpt-2000.data-00000-of-00001
├── [ 721]  model.ckpt-2000.index
└── [123K]  model.ckpt-2000.meta

如果再执行 2000 次训练,会发现目录中数据量增加:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
xxxx$ tree -h /tmp/iris_model
/tmp/iris_model
├── [ 302]  checkpoint
├── [4.0K]  eval
│   ├── [156K]  events.out.tfevents.1493025734.dev
│   └── [156K]  events.out.tfevents.1493025839.dev
├── [493K]  events.out.tfevents.1493025732.dev
├── [496K]  events.out.tfevents.1493025837.dev
├── [312K]  graph.pbtxt
├── [4.0K]  model.ckpt-1.data-00000-of-00001
├── [ 721]  model.ckpt-1.index
├── [123K]  model.ckpt-1.meta
├── [4.0K]  model.ckpt-2000.data-00000-of-00001
├── [ 721]  model.ckpt-2000.index
├── [123K]  model.ckpt-2000.meta
├── [4.0K]  model.ckpt-2001.data-00000-of-00001
├── [ 721]  model.ckpt-2001.index
├── [123K]  model.ckpt-2001.meta
├── [4.0K]  model.ckpt-4000.data-00000-of-00001
├── [ 721]  model.ckpt-4000.index
└── [123K]  model.ckpt-4000.meta

可见,训练的结果在执行完训练后,就已经保留下来了,后续对于数据的分类,可以直接使用当前的训练数据而不用重新训练:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# Specify that all features have real-value data
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
                                                                                        hidden_units=[10, 20, 10],
                                                                                        n_classes=3,
                                                                                        model_dir="/tmp/iris_model")

训练结束后,通过 30 组测试集来对训练效果进行测试,与训练时一样,同样构建一个数据输入函数 get_test_inputs,将数据和结果传入,使用 classifier.evaluate 对数据进行测试:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# Define the test inputs
def get_test_inputs():
    x = tf.constant(test_set.data)
    y = tf.constant(test_set.target)

    return x, y

# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=get_test_inputs,
                                                                         steps=1)["accuracy"]

print("nTest Accuracy: {0:f}n".format(accuracy_score))

注意到例子中把 classifier.evaluate 返回的结果的"accuracy"字段打印出来,其实返回的结果是一个字典,可以打印出来看看是什么:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
print(classifier.evaluate(input_fn=get_test_inputs, steps=1))

{'loss': 0.082033969, 'auc': 0.99833333, 'global_step': 4000, 'accuracy': 0.96666664}

可以看到打印结果中有损失函数、训练次数、准确率和 AUC 信息,auc 信息我还不太能理解它的具体含义,但是可以看做是评价模型效果的一个指标,有兴趣的同学可以顺手 Google 一下。 可以看到测试集的准确率是 96.67%,总共 30 个测试数据,错了 1 个。 那么未来对于单个输入数据,我们怎么使用训练好的模型对其进行分类呢?继续看代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# Classify two new flower samples.
def new_samples():
        return np.array([[6.4, 3.2, 4.5, 1.5],[5.8, 3.1, 5.0, 1.7]], dtype=np.float32)

predictions = list(classifier.predict(input_fn=new_samples))

print("New Samples, Class Predictions:    {}n".format(predictions))

还是创建一个输入函数,把数据传入,使用 classifier.predict 对数据进行分类,返回值是一个 生成器 generator,所以用 list 包一下,结果为:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
New Samples, Class Predictions:    [1, 2]

表示这 2 组数据分别被分类为 1 和 2。 这就是我对于官方的 DNN 分类器示例的一些理解,希望能帮助读者学习,完整代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#!/usr/bin/python
#coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np
import os
import urllib

tf.logging.set_verbosity(tf.logging.ERROR)              #日志级别设置成 ERROR,避免干扰
np.set_printoptions(threshold='nan')                    #打印内容不限制长度

# Data sets
IRIS_TRAINING = "iris_training.csv"
IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"

IRIS_TEST = "iris_test.csv"
IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

def main():
        # If the training and test sets aren't stored locally, download them.
        if not os.path.exists(IRIS_TRAINING):
                raw = urllib.urlopen(IRIS_TRAINING_URL).read()
                with open(IRIS_TRAINING, "w") as f:
                        f.write(raw)

        if not os.path.exists(IRIS_TEST):
                raw = urllib.urlopen(IRIS_TEST_URL).read()
                with open(IRIS_TEST, "w") as f:
                        f.write(raw)

        # Load datasets.
        training_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=IRIS_TRAINING,
                target_dtype=np.int,
                features_dtype=np.float32)

        test_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=IRIS_TEST,
                target_dtype=np.int,
                features_dtype=np.float32)

        # Specify that all features have real-value data
        feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

        # Build 3 layer DNN with 10, 20, 10 units respectively.
        classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
                                                                                                hidden_units=[10, 20, 10],
                                                                                                n_classes=3,
                                                                                                model_dir="/tmp/iris_model")
        # Define the training inputs
        def get_train_inputs():
                x = tf.constant(training_set.data)
                y = tf.constant(training_set.target)
                return x, y

        # Fit model.
        classifier.fit(input_fn=get_train_inputs, steps=2000)

        # Define the test inputs
        def get_test_inputs():
                x = tf.constant(test_set.data)
                y = tf.constant(test_set.target)

                return x, y

        # Evaluate accuracy.
        #print(classifier.evaluate(input_fn=get_test_inputs, steps=1))
        accuracy_score = classifier.evaluate(input_fn=get_test_inputs, steps=1)["accuracy"]

        print("nTest Accuracy: {0:f}n".format(accuracy_score))

        # Classify two new flower samples.
        def new_samples():
                return np.array([[6.4, 3.2, 4.5, 1.5],[5.8, 3.1, 5.0, 1.7]], dtype=np.float32)

        predictions = list(classifier.predict(input_fn=new_samples))

        print("New Samples, Class Predictions:    {}n".format(predictions))

if __name__ == "__main__":
        main()

exit(0)

举一反三

学习了 DNN 分类器的用法之后,我们可以用它来做什么呢?先随便举个例子吧,给出一个坐标,输出它所在的象限,比如(1,1) 的象限为 1,(1,-1) 的象限为 4,其中比较特殊的,令在坐标轴上的数据点的象限为 0,比如(0,1) 和(0,0) 的象限输出为 0。 要完成这个测试,首先要生成训练集和测试集 csv 文件,使用一个 gen_data 函数生成数据,首行为数据组数和特征的数量,在本例中,特征数量为 2。我们使用随机数生成一个坐标(x,y),它们的值限制在 [-10,10) 的范围内,x 和 y 低于 0.2 的部分,将其置为 0,用来表示坐标轴上的点:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
QUADRANT_TRAINING = "quadrant_training.csv"
QUADRANT_TEST = "quadrant_test.csv"

def gen_data(file,count):
        with open(file,"w") as f:
                #首行,写入数据集的组数和特征的数量
                f.write("%d,2n" % count)

                #原点
                f.write("0,0,0n")

                #产生一个随机坐标(x,y)
                for i in range(1,count):
                        x = random.uniform(-10, 10)
                        y = random.uniform(-10, 10)

                        if abs(x) < 0.2:
                                x = 0
                        if abs(y) < 0.2:
                                y = 0

                        #获得坐标的象限
                        quadrant = 0
                        if x > 0 and y > 0:
                                quadrant = 1
                        elif x < 0 and y > 0:
                                quadrant = 2
                        elif x < 0 and y < 0:
                                quadrant = 3
                        elif x > 0 and y < 0:
                                quadrant = 4

                        f.write("%f,%f,%dn" % (x,y,quadrant))

在 main 函数中,判断数据文件是否存在,不存在则生成数据,其中训练集包含 2000 个数据,测试集包含 5000 个数据:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 生成训练集和测试集
if not os.path.exists(QUADRANT_TRAINING):
        gen_data(QUADRANT_TRAINING,2000)

if not os.path.exists(QUADRANT_TEST):
        gen_data(QUADRANT_TEST,5000)

训练的内容和前面的例子几乎完全没有变化,这里我认为可以调整的参数有神经网络的层数以及每层的神经元数,这个目前我还没有经验对其进行调整:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 加载数据
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=QUADRANT_TRAINING,
        target_dtype=np.int, features_dtype=np.float32)

test_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=QUADRANT_TEST,
        target_dtype=np.int, features_dtype=np.float32)

# 2 维数据
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=2)]

# 改造一个分类器
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
                                                                                        hidden_units=[10, 20, 10],
                                                                                        n_classes=5,
                                                                                        model_dir="/tmp/quadrant_model")
# 构造训练输入函数
def get_train_inputs():
        x = tf.constant(training_set.data)
        y = tf.constant(training_set.target)
        return x, y

# 训练模型
classifier.fit(input_fn=get_train_inputs, steps=2000)

# 构造测试输入函数
def get_test_inputs():
        x = tf.constant(test_set.data)
        y = tf.constant(test_set.target)

        return x, y

# 评估准确度
print(classifier.evaluate(input_fn=get_test_inputs, steps=1))
accuracy_score = classifier.evaluate(input_fn=get_test_inputs, steps=1)["accuracy"]
print("nTest Accuracy: {0:f}n".format(accuracy_score))

最后传入几个测试数据,由模型对数据进行分类,这样可以直观的看到训练的效果,其中包含了几个在训练集中没有的数据,训练集中的坐标点绝对值都限制在 10 以内,测试中传入了坐标值为 100 的点,看是否能够得到正确的结果:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 传入数据,对其进行分类
def new_samples():
        return np.array([[1,1],[100,100],[-1,1],[-100,100],[-1,-1],[-100,-100],[1,-1],[100,-100],[100,0],[0,100],[-100,0],[0,-100],[0,0]], dtype=np.float32)

predictions = list(classifier.predict(input_fn=new_samples))

print("New Samples, Class Predictions:    {}n".format(predictions))

完整代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#!/usr/bin/python
#coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np
import os
import urllib
import random

tf.logging.set_verbosity(tf.logging.ERROR)              #日志级别设置成 ERROR,避免干扰
np.set_printoptions(threshold='nan')                    #打印内容不限制长度

QUADRANT_TRAINING = "quadrant_training.csv"
QUADRANT_TEST = "quadrant_test.csv"

def gen_data(file,count):
        with open(file,"w") as f:
                #首行,写入数据集的组数和特征的数量
                f.write("%d,2n" % count)

                #原点
                f.write("0,0,0n")

                #产生一个随机坐标(x,y)
                for i in range(1,count):
                        x = random.uniform(-10, 10)
                        y = random.uniform(-10, 10)

                        if abs(x) < 0.2:
                                x = 0
                        if abs(y) < 0.2:
                                y = 0

                        #获得坐标的象限
                        quadrant = 0
                        if x > 0 and y > 0:
                                quadrant = 1
                        elif x < 0 and y > 0:
                                quadrant = 2
                        elif x < 0 and y < 0:
                                quadrant = 3
                        elif x > 0 and y < 0:
                                quadrant = 4

                        f.write("%f,%f,%dn" % (x,y,quadrant))

def main():
        # 生成训练集和测试集
        if not os.path.exists(QUADRANT_TRAINING):
                gen_data(QUADRANT_TRAINING,2000)

        if not os.path.exists(QUADRANT_TEST):
                gen_data(QUADRANT_TEST,5000)

        # 加载数据
        training_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=QUADRANT_TRAINING,
                target_dtype=np.int, features_dtype=np.float32)

        test_set = tf.contrib.learn.datasets.base.load_csv_with_header(filename=QUADRANT_TEST,
                target_dtype=np.int, features_dtype=np.float32)

        # 2 维数据
        feature_columns = [tf.contrib.layers.real_valued_column("", dimension=2)]

        # 改造一个分类器
        classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
                                                                                                hidden_units=[10, 20, 10],
                                                                                                n_classes=5,
                                                                                                model_dir="/tmp/quadrant_model")
        # 构造训练输入函数
        def get_train_inputs():
                x = tf.constant(training_set.data)
                y = tf.constant(training_set.target)
                return x, y

        # 训练模型
        classifier.fit(input_fn=get_train_inputs, steps=2000)

        # 构造测试输入函数
        def get_test_inputs():
                x = tf.constant(test_set.data)
                y = tf.constant(test_set.target)

                return x, y

        # 评估准确度
        print(classifier.evaluate(input_fn=get_test_inputs, steps=1))
        accuracy_score = classifier.evaluate(input_fn=get_test_inputs, steps=1)["accuracy"]
        print("nTest Accuracy: {0:f}n".format(accuracy_score))

        # 传入数据,对其进行分类
        def new_samples():
                return np.array([[1,1],[100,100],[-1,1],[-100,100],[-1,-1],[-100,-100],[1,-1],[100,-100],[100,0],[0,100],[-100,0],[0,-100],[0,0]], dtype=np.float32)

        predictions = list(classifier.predict(input_fn=new_samples))

        print("New Samples, Class Predictions:    {}n".format(predictions))

if __name__ == "__main__":
        main()


exit(0)

执行上述代码,每执行一次,程序会训练 2000 次,多次执行,可以逐步提高训练准确度,首次执行的结果如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
{'loss': 0.0097644748, 'auc': 0.99999833, 'global_step': 2000, 'accuracy': 0.99879998}

Test Accuracy: 0.998800

New Samples, Class Predictions:    [1, 1, 2, 2, 3, 3, 4, 4, 0, 0, 0, 0, 0]

可以看到达到了 99.88%的准确度,手工传入的测试数据全部正确,可见效果确实很不错。 再多执行几次程序,提高训练的次数,loss 函数值会越来越小,分类准确率越来越高。本例中,在进行 14000 次训练后,准确度达到了 100%:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
{'loss': 0.0038823907, 'auc': 0.99999958, 'global_step': 4000, 'accuracy': 0.99900001}
{'loss': 0.002235481, 'auc': 1.0, 'global_step': 6000, 'accuracy': 0.99959999}
{'loss': 0.0015281083, 'auc': 1.0, 'global_step': 8000, 'accuracy': 0.99959999}
{'loss': 0.0011556753, 'auc': 0.99999994, 'global_step': 10000, 'accuracy': 0.99980003}
{'loss': 0.00092803896, 'auc': 1.0, 'global_step': 12000, 'accuracy': 0.99980003}
{'loss': 0.00077638833, 'auc': 1.0, 'global_step': 14000, 'accuracy': 1.0}
{'loss': 0.0006688094, 'auc': 1.0, 'global_step': 16000, 'accuracy': 1.0}
{'loss': 0.00058882247, 'auc': 1.0000001, 'global_step': 18000, 'accuracy': 1.0}

在我的机器上,执行 2000 次训练耗时将近 8s,14000 次差不多耗时 1 分钟,在训练完毕后,如果只是需要对数据进行分类,则耗时可以降低到 0.5s 左右,其中加载训练数据耗时 0.22s,对数据进行分类耗时 0.2s,其他则是脚本本身的开销。从这里也可以看到,DNN 分类器的训练过程是比较耗时的,具体执行的过程并不算特别耗时。 学会使用 DNN 分类器之后,如果有一些数据,有几个输入特征值,需要将其分类,就可以采用 DNN 分类器很方便地对其进行处理,前提是训练的数据集数量足够,这样才能达到比较好的训练效果。 比如我能想到的一个例子是文字识别,或者验证码识别,通过对图像的特征描述,达到识别文字或者验证码的目的。特征可以是简单的文字二维点阵描述,或者复杂点,描述为文字中封闭区域,转折的数量、方向等。其他还有很多问题可以通过 DNN 分类器解决,了解这个工具后,遇到问题时可以想想能否用这些机器学习的工具帮忙解决问题,在使用过程中,逐步理解各种神经网络的知识,如果直接看理论,难度很大也很枯燥,在实践中学习会更加容易,记忆也更加深刻,这也是我学习 TensorFlow 的一个目的。

参考资料

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
Python和Scala里的闭包
在函数式编程里,闭包(closure)是绕不过的话题,它的实现基础来源于变量作用域和一等函数。也正是因为如此,我们可以进一步把代码块抽象,Python也诞生了装饰器。
哒呵呵
2018/08/06
8700
Scala语法笔记
JAVA中,举例你S是一个字符串,那么s(i)就是该字符串的第i个字符(s.charAt(i)).Scala中使用apply的方法
用户3003813
2018/09/06
1.3K0
Scala语法笔记
scala与java之间的那些事
  scala与java之间的关系,我认为可以用一句话来开头:scala来源于java,但又高于java。   scala的设计者Martin Odersky就是一个JAVA控,这位牛人设计了javac和编写了jdk中的通用代码。可以说java语言本身就是Martin Odersky一步一步看着长大的。所以scala可以说打根起就和JAVA有着远远悠长的血缘关系。   Martin Odersky还在写java那会,就立志开发达成一个目标:让写程序这样一个基础工作变得高效、简单、且令人愉悦!因此可以说sca
随机来个数
2018/04/16
9760
Scala专题系列(九) : Scala函数式编程
普通一个函数是输入一个参数输出一个返回值,而带有副作用的函数不仅仅返回一个值,还带有其它的操作:
用户5252199
2022/04/18
4150
Python和Scala的一等函数
函数指的是执行某个任务或者是一系列的指令被组织成的一片代码块。标准的数学意义上的函数指的是输入集合和输出集合的一种对应关系。
哒呵呵
2018/08/06
6430
Python和Scala的一等函数
Spark 累加器与广播变量
在 Spark 中,提供了两种类型的共享变量:累加器 (accumulator) 与广播变量 (broadcast variable):
每天进步一点点
2022/07/27
7930
Spark 累加器与广播变量
Scala学习笔记
大数据框架(处理海量数据/处理实时流式数据) 一:以hadoop2.X为体系的海量数据处理框架         离线数据分析,往往分析的是N+1的数据         - Mapreduce             并行计算,分而治之             - HDFS(分布式存储数据)             - Yarn(分布式资源管理和任务调度)             缺点:                 磁盘,依赖性太高(io)                 shuffle过程,map将数据写入到本次磁盘,reduce通过网络的方式将map task任务产生到HDFS         - Hive 数据仓库的工具             底层调用Mapreduce             impala         - Sqoop             桥梁:RDBMS(关系型数据库)- > HDFS/Hive                   HDFS/Hive -> RDBMS(关系型数据库)         - HBASE             列式Nosql数据库,大数据的分布式数据库  二:以Storm为体系的实时流式处理框架         Jstorm(Java编写)         实时数据分析 -》进行实时分析         应用场景:             电商平台: 双11大屏             实时交通监控             导航系统  三:以Spark为体系的数据处理框架         基于内存            将数据的中间结果放入到内存中(2014年递交给Apache,国内四年时间发展的非常好)         核心编程:             Spark Core:RDD(弹性分布式数据集),类似于Mapreduce             Spark SQL:Hive             Spark Streaming:Storm         高级编程:             机器学习、深度学习、人工智能             SparkGraphx             SparkMLlib             Spark on R Flink
曼路
2018/10/18
2.6K0
Scala基础——高阶函数
在非函数式编程语言里,函数的定义包含了“函数类型”和“值”两种层面的内容。但是,在函数式编程中,函数是“头等公民”,可以像任何其他数据类型一样被传递和操作,也就是说,函数的使用方式和其他数据类型的使用方式完全一致了。这时,我们就可以像定义变量那样去定义一个函数,由此导致的结果是,函数也会和其他变量一样,开始有“值”。就像变量的“类型”和“值”是分开的两个概念一样,函数式编程中,函数的“类型”和“值”也成为两个分开的概念,函数的“值”,就是“函数字面量”。 整数字面量
羊羽shine
2019/08/09
4070
Scala | 教程 | 学习手册 --- 首类函数
函数式编程的核心就是函数应当是首类的。首类表示函数不仅能得到声明和调用,还可以作为一个数据类型用在这个语言的任何地方。
曲奇
2021/12/14
4110
Scala的函数
前文已经提到Scala变量的用法,现在聊聊函数。在Scala里,函数的定义很简单。例如:
哒呵呵
2018/12/18
4510
Scala 闭包(九)
在 multiplier 中有两个变量:i 和 factor。其中的一个 i 是函数的形式参数,在 multiplier 函数被调用时,i 被赋予一个新的值。然而,factor不是形式参数,而是自由变量,考虑下面代码:
王知无-import_bigdata
2019/03/15
3540
scala(七) 函数式编程补充
说明: 没有名字的函数就是匿名函数,可以直接通过函数字面量(λ表达式)来设置匿名函数,函数字面量定义格式如下。
用户1483438
2022/04/13
2980
Spark基础-scala学习(四、函数式编程)
函数式编程 将函数赋值给变量 匿名函数 高阶函数 高级函数的类型推断 scala的常用高阶函数 闭包 sam转换 currying函数 return 将函数赋值给变量 scala中的函数是一等公民,可以独立定义,独立存在,而且可以直接将函数作为值赋值给变量 scala> def sayHello(name:String){println("Hello, "+name)} sayHello: (name: String)Unit scala> sayHello("tom") Hello, tom scal
老梁
2019/09/10
8050
关于闭包
        首先说明下...闭包是js高级特性之一...但并非js独有...perl, python, php(5.3以上版本) 都是支持闭包的..
Java架构师必看
2021/03/22
2K0
Scala | 教程 | 学习手册 --- 常用集合
所有集合的根是Iterator,它提供了一组公共方法,可以用来迭代处理和管理集合数据。
曲奇
2021/12/14
6020
Scala | 教程 | 学习手册 --- 常用集合
快速学习-Scala函数式编程
在scala中,函数式编程和面向对象编程融合在一起,学习函数式编程式需要oop的知识,同样学习oop需要函数式编程的基础。[矛盾] 关系如下图:
cwl_java
2020/02/27
9400
快速学习-Scala函数式编程
Scala之偏函数Partial Function
http://blog.csdn.net/bluishglc/article/details/50995939 从使用case语句构造匿名函数谈起 在Scala里,我们可以使用case语句来创建一个匿名函数(函数字面量),这有别于一般的匿名函数创建方法。来看个例子: scala> List(1,2,3) map {case i:Int=>i+1} res1: List[Int] = List(2, 3, 4) 这很有趣,case i:Int=>i+1 构建的匿名函数等同于(i:Int)=>i+1 ,也
Albert陈凯
2018/04/04
9770
Scala 高阶(九):Scala中的模式匹配
本次主要分享Scala中关于模式匹配的内容,Scala中的模式匹配类似于Java中的switch语法,但是Scala在基于Java的思想上补充了特有的功能。
百思不得小赵
2022/12/01
1.6K0
Scala的基础概念
例如:调用 def Add(y:Int) = x + y 其结果为xy之和,并且调用之后没有引起x值的变换,没有副作用 所以,Add函数没有副作用
ZONGLYN
2019/08/08
7560
Kotlin中的函数
函数还可以用中缀表示法调用,当他们是成员函数或扩展函数,只有一个参数,用 infix关键字标注
deep_sadness
2018/08/30
2.4K0
相关推荐
Python和Scala里的闭包
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档