Python 3 中 PyMongo 的用法

MongoDB存储

在这里我们来看一下Python3下MongoDB的存储操作,在本节开始之前请确保你已经安装好了MongoDB并启动了其服务,另外安装好了Python的PyMongo库。

连接MongoDB

连接MongoDB我们需要使用PyMongo库里面的MongoClient,一般来说传入MongoDB的IP及端口即可,第一个参数为地址host,第二个参数为端口port,端口如果不传默认是27017。

import pymongo
client = pymongo.MongoClient(host='localhost', port=27017)

这样我们就可以创建一个MongoDB的连接对象了。

另外MongoClient的第一个参数host还可以直接传MongoDB的连接字符串,以mongodb开头,例如:

client = MongoClient('mongodb://localhost:27017/')

可以达到同样的连接效果。

指定数据库

MongoDB中还分为一个个数据库,我们接下来的一步就是指定要操作哪个数据库,在这里我以test数据库为例进行说明,所以下一步我们需要在程序中指定要使用的数据库。

db = client.test

调用client的test属性即可返回test数据库,当然也可以这样来指定:

db = client['test']

两种方式是等价的。

指定集合

MongoDB的每个数据库又包含了许多集合Collection,也就类似与关系型数据库中的表,下一步我们需要指定要操作的集合,在这里我们指定一个集合名称为students,学生集合。还是和指定数据库类似,指定集合也有两种方式。

collection = db.students

collection = db['students']

插入数据

接下来我们便可以进行数据插入了,对于students这个Collection,我们新建一条学生数据,以字典的形式表示:

student = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

在这里我们指定了学生的学号、姓名、年龄和性别,然后接下来直接调用collection的insert()方法即可插入数据。

result = collection.insert(student)
print(result)

在MongoDB中,每条数据其实都有一个_id属性来唯一标识,如果没有显式指明_id,MongoDB会自动产生一个ObjectId类型的_id属性。insert()方法会在执行后返回的_id值。

运行结果:

5932a68615c2606814c91f3d

当然我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:

student1 = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

student2 = {
    'id': '20170202',
    'name': 'Mike',
    'age': 21,
    'gender': 'male'
}

result = collection.insert([student1, student2])
print(result)

返回的结果是对应的_id的集合,运行结果:

[ObjectId('5932a80115c2606a59e8a048'), ObjectId('5932a80115c2606a59e8a049')]

实际上在PyMongo 3.X版本中,insert()方法官方已经不推荐使用了,当然继续使用也没有什么问题,官方推荐使用insert_one()和insert_many()方法将插入单条和多条记录分开。

student = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

result = collection.insert_one(student)
print(result)
print(result.inserted_id)

运行结果:

<pymongo.results.InsertOneResult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5

返回结果和insert()方法不同,这次返回的是InsertOneResult对象,我们可以调用其inserted_id属性获取_id。

对于insert_many()方法,我们可以将数据以列表形式传递即可,示例如下:

student1 = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

student2 = {
    'id': '20170202',
    'name': 'Mike',
    'age': 21,
    'gender': 'male'
}

result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)

insert_many()方法返回的类型是InsertManyResult,调用inserted_ids属性可以获取插入数据的_id列表,运行结果:

<pymongo.results.InsertManyResult object at 0x101dea558>
[ObjectId('5932abf415c2607083d3b2ac'), ObjectId('5932abf415c2607083d3b2ad')]

查询

插入数据后我们可以利用find_one()或find()方法进行查询,find_one()查询得到是单个结果,find()则返回多个结果。

result = collection.find_one({'name': 'Mike'})
print(type(result))
print(result)

在这里我们查询name为Mike的数据,它的返回结果是字典类型,运行结果:

<class 'dict'>
{'_id': ObjectId('5932a80115c2606a59e8a049'), 'id': '20170202', 'name': 'Mike', 'age': 21, 'gender': 'male'}

可以发现它多了一个_id属性,这就是MongoDB在插入的过程中自动添加的。

我们也可以直接根据ObjectId来查询,这里需要使用bson库里面的ObjectId。

from bson.objectid import ObjectId

result = collection.find_one({'_id': ObjectId('593278c115c2602667ec6bae')})
print(result)

其查询结果依然是字典类型,运行结果:

{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}

当然如果查询结果不存在则会返回None。

对于多条数据的查询,我们可以使用find()方法,例如在这里查找年龄为20的数据,示例如下:

results = collection.find({'age': 20})
print(results)
for result in results:
    print(result)

运行结果:

<pymongo.cursor.Cursor object at 0x1032d5128>
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278c815c2602678bb2b8d'), 'id': '20170102', 'name': 'Kevin', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278d815c260269d7645a8'), 'id': '20170103', 'name': 'Harden', 'age': 20, 'gender': 'male'}

返回结果是Cursor类型,相当于一个生成器,我们需要遍历取到所有的结果,每一个结果都是字典类型。

如果要查询年龄大于20的数据,则写法如下:

results = collection.find({'age': {'$gt': 20}})

在这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号$gt,意思是大于,键值为20,这样便可以查询出所有年龄大于20的数据。

在这里将比较符号归纳如下表:

| 符号 | 含义 | 示例 |

| --- | ---- | --- |

| $lt | 小于 | {'age': {'$lt': 20}} |

| $gt | 大于 | {'age': {'$gt': 20}} |

| $lte | 小于等于 | {'age': {'$lte': 20}} |

| $gte | 大于等于 | {'age': {'$gte': 20}} |

| $ne | 不等于 | {'age': {'$ne': 20}} |

| $in | 在范围内 | {'age': {'$in': [20, 23]}} |

| $nin | 不在范围内 | {'age': {'$nin': [20, 23]}} |

另外还可以进行正则匹配查询,例如查询名字以M开头的学生数据,示例如下:

results = collection.find({'name': {'$regex': '^M.*'}})

在这里使用了$regex来指定正则匹配,^M.*代表以M开头的正则表达式,这样就可以查询所有符合该正则的结果。

在这里将一些功能符号再归类如下:

| 符号 | 含义 | 示例 | 示例含义 |

| --- | ---- | --- | --- |

| $regex | 匹配正则 | {'name': {'$regex': '^M.*'}} | name以M开头 |

| $exists | 属性是否存在 | {'name': {'$exists': True}} | name属性存在 |

| $type | 类型判断 | {'age': {'$type': 'int'}} | age的类型为int |

| $mod | 数字模操作 | {'age': {'$mod': [5, 0]}} | 年龄模5余0 |

| $text | 文本查询 | {'$text': {'$search': 'Mike'}} | text类型的属性中包含Mike字符串 |

| $where | 高级条件查询 | {'$where': 'obj.fans_count == obj.follows_count'} | 自身粉丝数等于关注数 |

这些操作的更详细用法在可以在MongoDB官方文档找到:

https://docs.mongodb.com/manual/reference/operator/query/

计数

要统计查询结果有多少条数据,可以调用count()方法,如统计所有数据条数:

count = collection.find().count()
print(count)

或者统计符合某个条件的数据:

count = collection.find({'age': 20}).count()
print(count)

排序

可以调用sort方法,传入排序的字段及升降序标志即可,示例如下:

results = collection.find().sort('name', pymongo.ASCENDING)
print([result['name'] for result in results])

运行结果:

['Harden', 'Jordan', 'Kevin', 'Mark', 'Mike']

偏移

在某些情况下我们可能想只取某几个元素,在这里可以利用skip()方法偏移几个位置,比如偏移2,就忽略前2个元素,得到第三个及以后的元素。

results = collection.find().sort('name', pymongo.ASCENDING).skip(2)
print([result['name'] for result in results])

运行结果:

['Kevin', 'Mark', 'Mike']

另外还可以用limit()方法指定要取的结果个数,示例如下:

results = collection.find().sort('name', pymongo.ASCENDING).skip(2).limit(2)
print([result['name'] for result in results])

运行结果:

['Kevin', 'Mark']

如果不加limit()原本会返回三个结果,加了限制之后,会截取2个结果返回。

值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,很可能会导致内存溢出,可以使用类似find({'_id': {'$gt': ObjectId('593278c815c2602678bb2b8d')}}) 这样的方法来查询,记录好上次查询的_id。

更新

对于数据更新可以使用update()方法,指定更新的条件和更新后的数据即可,例如:

condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 25
result = collection.update(condition, student)
print(result)

在这里我们将name为Kevin的数据的年龄进行更新,首先指定查询条件,然后将数据查询出来,修改年龄,之后调用update方法将原条件和修改后的数据传入,即可完成数据的更新。

运行结果:

{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

返回结果是字典形式,ok即代表执行成功,nModified代表影响的数据条数。

另外update()方法其实也是官方不推荐使用的方法,在这里也分了update_one()方法和update_many()方法,用法更加严格,第二个参数需要使用$类型操作符作为字典的键名,我们用示例感受一下。

condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 26
result = collection.update_one(condition, {'$set': student})
print(result)
print(result.matched_count, result.modified_count)

在这里调用了update_one方法,第二个参数不能再直接传入修改后的字典,而是需要使用{'$set': student}这样的形式,其返回结果是UpdateResult类型,然后调用matched_count和modified_count属性分别可以获得匹配的数据条数和影响的数据条数。

运行结果:

<pymongo.results.UpdateResult object at 0x10d17b678>
1 0

我们再看一个例子:

condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

在这里我们指定查询条件为年龄大于20,然后更新条件为{'$inc': {'age': 1}},也就是年龄加1,执行之后会讲第一条符合条件的数据年龄加1。

运行结果:

<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1

可以看到匹配条数为1条,影响条数也为1条。

如果调用update_many()方法,则会将所有符合条件的数据都更新,示例如下:

condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

这时候匹配条数就不再为1条了,运行结果如下:

<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3

可以看到这时所有匹配到的数据都会被更新。

删除

删除操作比较简单,直接调用remove()方法指定删除的条件即可,符合条件的所有数据均会被删除,示例如下:

result = collection.remove({'name': 'Kevin'})
print(result)

运行结果:

{'ok': 1, 'n': 1}

另外依然存在两个新的推荐方法,delete_one()和delete_many()方法,示例如下:

result = collection.delete_one({'name': 'Kevin'})
print(result)
print(result.deleted_count)
result = collection.delete_many({'age': {'$lt': 25}})
print(result.deleted_count)

运行结果:

<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4

delete_one()即删除第一条符合条件的数据,delete_many()即删除所有符合条件的数据,返回结果是DeleteResult类型,可以调用deleted_count属性获取删除的数据条数。

更多

另外PyMongo还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()、find_one_and_update(),就是查找后删除、替换、更新操作,用法与上述方法基本一致。

另外还可以对索引进行操作,如create_index()、create_indexes()、drop_index()等。

详细用法可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/collection.html

另外还有对数据库、集合本身以及其他的一些操作,在这不再一一讲解,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/

原创声明,本文系作者授权云+社区-专栏发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Python

JavaScript基础

一 JavaScript的基础 1.1 JS的引入方式 1 直接编写 <script> alert('hello yuan') ...

2058
来自专栏liuchengxu

Vim 文本对象指南 (2)

接 Vim 文本对象 (1), 关于插件使用, 可以查看完整配置 space-vim.

392
来自专栏漏斗社区

CTF| 这是一个刚挖好的洞······

背景 近期在研究学习变量覆盖漏洞的问题,于是就把之前学习的和近期看到的CTF题目中有关变量覆盖的题目结合下进一步研究。 通常将可以用自定义的参数值替换原有变...

3618
来自专栏Ryan Miao

YAML 语法

YAML 语法 来源:yaml 这个页面提供一个正确的 YAML 语法的基本概述, 它被用来描述一个 playbooks(我们的配置管理语言). 我们使用 YA...

3259
来自专栏个人分享

hiveql函数笔记(二)

SELECT count(*),avg(salary) FROM employees;

631
来自专栏柠檬先生

Angularjs基础(十一)

ng-csp       描述:修改内容的安全策略       实例: 修改AngularJS 中关于"eval"的行为方式及内联样式;         ...

2165
来自专栏Pythonista

前端学习之JavaScript

尽管 ECMAScript 是一个重要的标准,但它并不是 JavaScript 唯一的部分,当然,也不是唯一被标准化的部分。实际上,一个完整的 JavaScri...

1023
来自专栏崔庆才的专栏

Python操作MongoDB看这一篇就够了

2634
来自专栏IMWeb前端团队

20个例子入门Q.js

本文希望通过20个简单的例子让没用过Q.js的同学快速掌握其基本用法 1. 新建实例 html代码: <div id="demo" q-text="msg"><...

1857
来自专栏菜鸟致敬

记一次两小时的js编程学习

1.弱类型语言 2.解释型语言 3.客户端语言 对于有学习Java、C以及Python一类的人来说,最熟悉的莫过于这些都是强类型语言。它们严格的遵守自身的规定,...

572

扫码关注云+社区