TensorFlow -2: 用 CNN 识别数字

本文结构:

  • CNN
  • 建立模型
  • code

昨天只是用了简单的 softmax 做数字识别,准确率为 92%,这个太低了,今天用 CNN 来提高一下准确率。

关于 CNN,可以看这篇:

图解何为CNN

简单看一个典型的 Deep CNN 由若干组 Convolution-ReLU-Pooling 层组成。

这三层可以提取出有用的 pattern,但它们并不知道这些 pattern 是什么。

所以接着是 Fully Connected 层,它可以对数据进行分类。

在 CNN 中有几个重要的概念:

  • stride
  • padding
  • pooling

stride,就是每跨多少步抽取信息。每一块抽取一部分信息,长宽就缩减,但是厚度增加。抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体。

padding,抽取的方式有两种,一种是抽取后的长和宽缩减,另一种是抽取后的长和宽和原来的一样。

pooling,就是当跨步比较大的时候,它会漏掉一些重要的信息,为了解决这样的问题,就加上一层叫pooling,事先把这些必要的信息存储起来,然后再变成压缩后的层:

即 Pooling 层是用来降维的。

经过 convolution 和 ReLU 的作用后,会有越来越复杂的形式,所以Pooling 层负责提取出最重要的 pattern,进而提高时间空间的效率。

patch,就是小方块的长宽的像素,in size 是image的厚度为1,out size是输出的厚度为32:

模型

主要就是建立 2 组 convolution-pooling 层,全连接层,加 dropout 减小过拟合,得到预测值 y_conv:

  • 每一层建立 weight 和 bias,
  • 和上一层的输出值经过 conv2d 作用后,应用 ReLu 激活函数,
  • 再做 pooling 后得到的输出值传递给下一层

code 和注释:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)    
    return tf.Variable(initial)                            

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义2维的 convolutional 图层
def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')        

# 定义 pooling 图层
def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')        

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784])         # 784=28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])            # 最后一个1表示数据是黑白的
# print(x_image.shape)  # [n_samples, 28,28,1]

## 1. conv1 layer ##
#  把x_image的厚度1加厚变成了32
W_conv1 = weight_variable([5, 5, 1, 32])                 # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
# 构建第一个convolutional层,外面再加一个非线性化的处理relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)             # output size 28x28x32
# 经过pooling后,长宽缩小为14x14
h_pool1 = max_pool_2x2(h_conv1)                                     # output size 14x14x32

## 2. conv2 layer ##
# 把厚度32加厚变成了64
W_conv2 = weight_variable([5,5, 32, 64])                 # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
# 构建第二个convolutional层
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)             # output size 14x14x64
# 经过pooling后,长宽缩小为7x7
h_pool2 = max_pool_2x2(h_conv2)                                     # output size 7x7x64

## 3. func1 layer ##
# 飞的更高变成1024
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
# 把pooling后的结果变平
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

## 4. func2 layer ##
# 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(
            mnist.test.images, mnist.test.labels))

学习资料:

https://www.tensorflow.org/get_started/mnist/pros

原创声明,本文系作者授权云+社区-专栏发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

机器学习算法如何调参?这里有一份神经网络学习速率设置指南

作者:Jeremy Jordan 机器之心编译 参与:黄小天、许迪 每个机器学习的研究者都会面临调参过程的考验,而在调参过程中,学习速率(learning ra...

2724
来自专栏人工智能

机器学习教程:最大熵文本分类器

在本教程中,我们将讨论最大熵文本分类器,也称为MaxEnt分类器。最大熵分类器是自然语言处理,语音和信息检索问题中常用的判别分类器。使用像JAVA...

6488
来自专栏计算机视觉战队

ECCV-2018最佼佼者的目标检测算法

转眼间,离上次9月3日已有9天的时间,好久没有将最新最好的“干货”分享给大家,让大家一起在学习群里讨论最新技术,那今天我给大家带来ECCV-2018年最优pap...

1713
来自专栏小鹏的专栏

trick—Batch Normalization

深度学习中 Batch Normalization为什么效果好? 这里分五部分简单解释一下Batch Normalization (BN)。 1. What ...

2408
来自专栏ml

优化器--牛顿法总结

---这里记录下一些关于牛顿法来作为优化器的个人笔记 :) 关于牛顿法,先不说其中的概念,来简单看一个例子? 不用计算器,如何手动开一个值的平方根,比如计算{s...

27012
来自专栏杂七杂八

K最近邻与线性分类器(上)

图像分类的基本任务就是将图片分类,那如何进行图片分类呢?图片是不可能直接当作输入传递给我们的机器学习任务的,一个通用的做法就是将图片转换成一张巨大的数字表单。这...

1112
来自专栏和蔼的张星的图像处理专栏

6. RCNN--Fast-RCNN--Faster-RCNN技术演进

分类已经学习过了四大网络(AlexNet,VGG,InceptionNer,ResNet),对于一个分类问题,数据量足够的话,根据分类复杂性搭建不同深度的卷积神...

893
来自专栏专知

【干货】卷积神经网络中的四种基本组件

【导读】当今,卷积神经网络在图像识别等领域取得巨大的成功,那么是什么使其高效而快速呢?本文整理John Olafenwa的一篇博文,主要介绍了卷积神经网络采用的...

4516
来自专栏贾志刚-OpenCV学堂

AlexNet网络的结构详解与实现

在2012年ImageNet图像分类任务竞赛中AlexNet一鸣惊人,对128万张1000个分类的预测结果大大超过其他算法模型准确率,打败其它非DNN网络一鸣惊...

734
来自专栏机器之心

从RCNN到SSD,这应该是最全的一份目标检测算法盘点

选自 Medium 作者:Jonathan Hui 机器之心编译 目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都...

4507

扫码关注云+社区