前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow -2: 用 CNN 识别数字

TensorFlow -2: 用 CNN 识别数字

原创
作者头像
杨熹
修改2017-10-16 16:08:30
2.5K0
修改2017-10-16 16:08:30
举报

本文结构:

  • CNN
  • 建立模型
  • code

昨天只是用了简单的 softmax 做数字识别,准确率为 92%,这个太低了,今天用 CNN 来提高一下准确率。

关于 CNN,可以看这篇:

图解何为CNN

简单看一个典型的 Deep CNN 由若干组 Convolution-ReLU-Pooling 层组成。

[1501468642972_2777_1501468643421.png]
[1501468642972_2777_1501468643421.png]

这三层可以提取出有用的 pattern,但它们并不知道这些 pattern 是什么。

所以接着是 Fully Connected 层,它可以对数据进行分类。

[1501468666283_2134_1501468666610.png]
[1501468666283_2134_1501468666610.png]
[1501468719812_9393_1501468720146.png]
[1501468719812_9393_1501468720146.png]

在 CNN 中有几个重要的概念:

  • stride
  • padding
  • pooling

stride,就是每跨多少步抽取信息。每一块抽取一部分信息,长宽就缩减,但是厚度增加。抽取的各个小块儿,再把它们合并起来,就变成一个压缩后的立方体。

padding,抽取的方式有两种,一种是抽取后的长和宽缩减,另一种是抽取后的长和宽和原来的一样。

pooling,就是当跨步比较大的时候,它会漏掉一些重要的信息,为了解决这样的问题,就加上一层叫pooling,事先把这些必要的信息存储起来,然后再变成压缩后的层:

即 Pooling 层是用来降维的。

经过 convolution 和 ReLU 的作用后,会有越来越复杂的形式,所以Pooling 层负责提取出最重要的 pattern,进而提高时间空间的效率。

[1501468865952_1830_1501468866272.png]
[1501468865952_1830_1501468866272.png]

patch,就是小方块的长宽的像素,in size 是image的厚度为1,out size是输出的厚度为32:

[1501468896722_9525_1501468897132.png]
[1501468896722_9525_1501468897132.png]

模型

主要就是建立 2 组 convolution-pooling 层,全连接层,加 dropout 减小过拟合,得到预测值 y_conv:

  • 每一层建立 weight 和 bias,
  • 和上一层的输出值经过 conv2d 作用后,应用 ReLu 激活函数,
  • 再做 pooling 后得到的输出值传递给下一层

[1501468932959_9935_1501468933429.png]
[1501468932959_9935_1501468933429.png]

code 和注释:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)    
    return tf.Variable(initial)                            

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义2维的 convolutional 图层
def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')        

# 定义 pooling 图层
def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')        

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784])         # 784=28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])            # 最后一个1表示数据是黑白的
# print(x_image.shape)  # [n_samples, 28,28,1]

## 1. conv1 layer ##
#  把x_image的厚度1加厚变成了32
W_conv1 = weight_variable([5, 5, 1, 32])                 # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
# 构建第一个convolutional层,外面再加一个非线性化的处理relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)             # output size 28x28x32
# 经过pooling后,长宽缩小为14x14
h_pool1 = max_pool_2x2(h_conv1)                                     # output size 14x14x32

## 2. conv2 layer ##
# 把厚度32加厚变成了64
W_conv2 = weight_variable([5,5, 32, 64])                 # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
# 构建第二个convolutional层
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)             # output size 14x14x64
# 经过pooling后,长宽缩小为7x7
h_pool2 = max_pool_2x2(h_conv2)                                     # output size 7x7x64

## 3. func1 layer ##
# 飞的更高变成1024
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
# 把pooling后的结果变平
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

## 4. func2 layer ##
# 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())

for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(
            mnist.test.images, mnist.test.labels))

学习资料:

https://www.tensorflow.org/get_started/mnist/pros

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 模型
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档