老司机带你检测相似图片

导语: 本文从从图片的dhash,ahash,phash,颜色分布向量到基于语义的sift,surf,gist特征,构建一套分层相似图片检测系统。本文致力于零基础单机快速搭建一个可用的相似图片识别系统。

1 背景

相似图片检测的定义是人眼看起来像,比如下面的俩图。

相似图片的检测广泛用于图片去重,仿冒图标检测,图片检索等。本文也是基于图标相似检测的需求去做的,本意是用于打假。然而专家老中医告诉我,打假不如推荐相似app受市场欢迎,并且不同应用场景下我们做事的思路也会不同。不管了,先把相似图片识别出来

2 检测的原理

图片相似检测无非是提取图片某个维度的特征,根据算法两两计算相似度。(基于机器学习,深度学习的方法则会先构建一个模型,然后将新样本特征输入模型即可。)简单流程可以描述为:

检测过程中可能用到的7个基础特征如下:

简单解释下,dhash,ahash,phash是根据基于分块等某种算法得到的基于图片RGB值的某个哈希(其详细描述可参考http://itindex.net/detail/42723 );RGB向量则是将色彩从256256256映射到较小的区间如444,然后计算图片在每个区间的分布形成一个数组;

SIFT,SURF,GIST则不再是RGB值的某种统计,而是试图构建人能理解的图片意义,如SIFT,SURF关注图片关键点(或者理解为重要的点)的信息,GIST则从自然度,开放度,粗糙度等描述图像。下图是这种专业的图片处理,很高大上有没有。

3 如何搭建一个仿冒图标检测系统

相似图片的检测可以用于去重,图片搜索等。底层技术是基于上文描述的方法,但是在根据目标不同,又有不同的结构。本工程的初衷是检测图标仿冒,系统结构如下:

思路:先把已标位正牌的图标特征(dhash,ahash,phash等)收集起来形成一个特征库,新图标来了则提取其特征去特征库里匹配,如果匹配到了相似度极高的则直接认定其为仿冒图标;如果匹配到了相似度较高的则转入sift,gist高级特征匹配。

4 show me the 效果

下面是一些相似图标示例:

图标大小缩放,添加元素,添加文字,颜色块变化等都是可以识别的。仿冒数量不便展示(/ □ )

5 提升性能和效果的关键点,坑

本工程最终在单机完成了数百万官方图标库,每天新进数十万图标的检测。在构建过程中遇到了不少坑,这些坑一部分是计算速度(单一图标匹配从300秒降低到0.2秒,鬼知道我的小心脏经历了什么),还有的是识别效果:

1.官方图标特征需先聚类,数百万的特征存储和匹配都比较麻烦。对官方库聚类后可以形成特征对图标的一对多关系,而不是维持原有的图标对特征的一对一关系;

2.匹配策略分层,如本工程一开始综合dhash及sift等,参数和策略调整非常复杂。分为两层后(哈希策略过滤,sift精确匹配),每一层的准确率和参数,策略调整非常方便;

3.哈希值的海明码距离计算耗时较多,在明确海明码距离范围的情况下可以采用分段匹配而非计算不同的位数。具体见http://www.cnblogs.com/gantoday/p/6404923.html

4.工程经验上:opencv-python不直接提供sift,surf算法了。可以用opencv-contrib-python这个库。gist可以用pyleargist这个库,其依赖安装见http://blog.csdn.net/sensicall/article/details/77803915

6 潜在的改进点

海量图片匹配,第一步必须是生成图片的特征哈希,且改hash必须是局部敏感hash。局部敏感hash的特点是:原始数据相似的情况下,生成的hash值也会尽可能的保持相似。从图片dhash,ahash,phash的算法过程可以认为它们就是一种局部敏感哈希。所以可以用来检测相似。

但是在gist特征中,即使图片相似,生成的960维向量的每一个值几乎都不同,不直接具备利用它生成局部敏感哈希lsh的条件。这个时候需要对向量元素归一化,使得相似图片的大部分gist特征相同。这一点在pyleargist的官方页面https://pypi.python.org/pypi/pyleargist 下方有说明,但并没有讲怎么做。有文章说用simhash,但是对于simhash生成过程中的每个维度的权重一笔带过。个人很怀疑不采用归一化就生成simhash的做法。这里待研究

7 总结

当前图像处理发展多年,已经提出了多种特征,算法。在工程应用中需要结合自己的场景选用适当的特征(怎么适当?不确定的话就多试试(/ □ )),注重底层数据的质量,优化性能以便快速调整匹配策略。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

雷经纬的专栏

1 篇文章1 人订阅

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT技术精选文摘

机器学习在启动耗时测试中的应用及模型调优(一)

启动耗时自动化方案在关键帧识别时,常规的图像对比准确率很低。本文详细介绍了采用scikit-learn图片分类算法在启动耗时应用下的模型调优过程。在之后的续篇中...

1414
来自专栏AI启蒙研究院

【通俗理解】协方差

772
来自专栏AI科技评论

内部分享:这篇文章教你如何用神经网络破Flappy Bird记录

AI科技评论按:本文作者杨浩,原文载于作者个人博客。 以下内容来源于一次部门内部的分享,主要针对 AI 初学者,介绍包括 CNN、Deep Q Network...

3447
来自专栏大数据文摘

深度 | 你的神经网络不work? 这37个原因总有一款适合你!

1303

深入学习Apache Spark和TensorFlow

神经网络在过去的几年中取得了惊人的进展,现在它们已经成为图像识别和自动翻译领域的领先技术。TensorFlow是Google发布的用于数值计算和神经网络的新框架...

2647
来自专栏PPV课数据科学社区

【学习】 R语言与机器学习学习笔记(1)K-近邻算法

前言 最近在学习数据挖掘,对数据挖掘中的算法比较感兴趣,打算整理分享一下学习情况,顺便利用R来实现一下数据挖掘算法。 数据挖掘里我打算整理的...

2866
来自专栏一棹烟波

全景图转小行星视角投影原理详解

全景图是2:1比例的图片,一般是多张图像拼接而成。全景图2:1的比例可以很方便的映射到球面,而球坐标可以很方便的实现各种有趣的投影。比如小行星,水晶球,局部透视...

522
来自专栏最新技术

深入学习Apache Spark和TensorFlow

想要了解更多关于Apache Spark的信息,请在2016年2月在纽约出席Spark东部峰会。

2948
来自专栏机器之心

学界 | 深度神经网络的分布式训练概述:常用方法和技巧全面总结

深度学习已经为人工智能领域带来了巨大的发展进步。但是,必须说明训练深度学习模型需要显著大量的计算。在一台具有一个现代 GPU 的单台机器上完成一次基于 Imag...

732
来自专栏PHP在线

相似图片搜索的原理

上个月,Google把”相似图片搜索”正式放上了首页。 你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。 ? 一个对话框会出现。 ?...

3045

扫码关注云+社区