使用 Tensorflow 构建 CNN 进行情感分析实践

导语 一次简单的实验。出于兴趣的自学,求拍砖。

1 导论

Web挖掘中的情感分析类问题,其实是一个分类问题。而CNN可以用来处理分类任务,就是在最终的softmax函数计算属于各个类的概率,并归属到概率最大的类。

本次实验参照的是Kim Yoon的论文Convolutional Neural Networks for Sentence Classification

代码放在我的GitHub上。可以直接使用。

2 系统

2.1 数据集

本次实验使用的数据集来自Kaggle。具体文件都在/data路径下(train-kaggle.txt)。训练数据集中每行都包括5个等级的情感(0到4)及具体的影评。dev.txt是验证数据集。用训练数据集训练,根据在验证数据集上的表现选取模型,最后用选定的模型进行分类,得到结果,即result.txt

2.2 网络

下面这张图来自前面提到的Kim Yoon的论文。也是我们代码要实现的网络。第一层是嵌入层,将词组装成低维度的向量。下一层是卷积层,在前一层得到的向量上进行卷积。再下一层,即池化,将卷积层的结果转成特征向量,进行正则化等操作,最后在softmax层得到分类结果。

2.3 代码实现

查看text_cnn.py,这里定义了用于文本分类任务的TextCNN类。初始化时会指定句子长度、类别个数等参数。

class TextCNN(object):
def __init__(
  self, sequence_length, num_classes, vocab_size,
  embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):

对数据进行预处理后,就来到了第一层,要将词组装成低维度的向量:

# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)

代码指定了在CPU上执行,tf.nn.embedding_lookup(...)方法执行真正的嵌入操作。

pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)

上面这段代码是卷积层和池化操作,在TensorBoard中可以看可视化的结构:

3 实验结果

执行下面这行命令:

tensorboard --logdir ./runs/1497715905/summaries/

然后访问127.0.0.1:6060,可以在dashboard上看到精度与损失随着迭代变化的曲线。

精度:

损失:

而用这个模型给测试集分类的结果,就在result.txt中。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术翻译

回归问题的深层神经网络

众所周知,神经网络可用于解决分类问题,例如,它们被用于手写体数字分类,但问题是,如果我们将它们用于回归问题,它会有效果吗?

1.1K2
来自专栏AI研习社

Github 项目推荐 | 100+ Chinese Word Vectors 上百种预训练中文词向量

该项目提供了不同表征(密集和稀疏)上下文特征(单词,ngram,字符等)和语料库训练的中文单词向量。开发者可以轻松获得具有不同属性的预先训练的向量,并将它们用于...

1962
来自专栏PaddlePaddle

【文本分类】基于双层序列的文本分类模型

导语 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提...

3183
来自专栏杂七杂八

神经网络训练细节part1(下)

学习率的选择通过先用少部分数据来进行测试,选择一个较好的学习速率。选择的方式可以为在某个范围内随机取值,观察样本的准确率

1102
来自专栏企鹅号快讯

深入机器学习系列7-Random Forest

1 Bagging   采用自助采样法()采样数据。给定包含个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时,样本仍...

5006

用Python的长短期记忆神经网络进行时间序列预测

长短期记忆递归神经网络具有学习长的观察序列的潜力。

3.1K9
来自专栏机器之心

资源 | 如何利用VGG-16等模型在CPU上测评各深度学习框架

选自GitHub 机器之心编译 参与:蒋思源、刘晓坤 本项目对比了各深度学习框架在 CPU 上运行相同模型(VGG-16 和 MobileNet)单次迭代所需要...

6728
来自专栏机器之心

资源 | GitHub新项目:轻松使用多种预训练卷积网络抽取图像特征

选自GitHub 机器之心整理 参与:思源 最近 GitHub 有一个非常有意思的项目,它可以使用多种预训练 TensorFLow 模型计算图像特征。对于每一个...

3286
来自专栏人工智能

使用Keras在训练深度学习模型时监控性能指标

Keras库提供了一套供深度学习模型训练时的用于监控和汇总的标准性能指标并且开放了接口给开发者使用。

2.3K10
来自专栏大数据挖掘DT机器学习

如何用TensorFlow和TF-Slim实现图像标注、分类与分割

本文github源码地址: 在公众号 datadw 里 回复 图像 即可获取。 笔者将和大家分享一个结合了TensorFlow和slim库的小应用,来实现...

6394

扫码关注云+社区

领取腾讯云代金券