前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >谢宝友:深入理解 Linux RCU 从硬件说起之内存屏障

谢宝友:深入理解 Linux RCU 从硬件说起之内存屏障

原创
作者头像
Linuxer
修改2017-10-30 11:09:55
6.8K3
修改2017-10-30 11:09:55
举报
文章被收录于专栏:Linuxer的专栏Linuxer的专栏

本文简介:本文从硬件的角度引申出内存屏障,这不是内存屏障的详尽手册,但是相关知识对于理解RCU有所帮助。这不是一篇单独的文章,这是《谢宝友:深入理解Linux RCU》系列的第2篇,前序文章:《谢宝友:深入理解 Linux RCU 从硬件说起之内存屏障》

作者简介:谢宝友,在编程一线工作已经有20年时间,其中接近10年时间工作于Linux操作系统。在中兴通讯操作系统产品部工作期间,他作为技术总工参与的电信级嵌入式实时操作系统,获得了行业最高奖----中国工业大奖。 同时,他也是《深入理解并行编程》一书的译者。该书作者Paul E.McKeney是IBM Linux中心领导者,Linux RCU Maintainer。《深入理解RCU》系列文章整理了Paul E.McKeney的相关著作,希望能帮助读者更深刻的理解Linux内核中非常难于理解的模块----RCU。

联系方式:mail:scxby@163.com 微信:linux-kernel

一、内存Cache还有哪些不足?

上一篇文章我们谈到了内存Cache,并且描述了典型的Cache一致性协议MESI。Cache的根本目的,是解决内存与CPU速度多达两个数量级的性能差异。一个包含Cache的计算机系统,其结构可以简单的表示为下图:

仅仅只有Cache的计算机系统,它还存在如下问题: 1、Cache的速度,虽然比内存有了极大的提升,但是仍然比CPU慢几倍。 2、在发生“warmup cache miss”、“capacity miss”、“associativity miss”时,CPU必须等待从内存中读取数据,此时CPU会处于一种Stall的状态。其等待时间可能达到几百个CPU指令周期。

显然,这是现代计算机不能承受之重:)

二、Write buffer是为了解决什么问题?

如果CPU仅仅是执行foo = 1这样的语句,它其实无须从内存或者缓存中读取foo现在的值。因为无论foo当前的值是什么,它都会被覆盖。在仅仅只有Cache的系统中,foo = 1 这样的操作也会形成写停顿。自然而然的,CPU设计者应当会想到在Cache 和CPU之间再添加一级缓存。由于这样的缓存主要是应对写操作引起的Cache Miss,并且缓存的数据与写操作相关,因此CPU设计者将它命名为“Write buffer”。调整后的结构示意图如下(图中的store buffer即为write buffer):

通过增加这些Write buffer,CPU可以简单的将要保存的数据放到Write buffer 中,并且继续运行,而不会真正去等待Cache从内存中读取数据并返回。

对于特定CPU来说,这些Write buffer是属于本地的。或者在硬件多线程系统中,它对于特定核来说,是属于本地的。无论哪一种情况,一个特定CPU仅仅允许访问分配给它的Writebuffer。例如,在上图中,CPU 0不能访问CPU 1的存储缓冲,反之亦然。

Write buffer进一步提升了系统性能,但是它也会为硬件设计者带来一些困扰: 第一个困扰:违反了自身一致性。

考虑如下代码:变量“a”和“b”都初始化为0,包含变量“a”缓存行,最初被CPU 1所拥有,而包含变量“b”的缓存行最初被CPU0所拥有:

代码语言:javascript
复制
  1   a = 1;
  2   b = a + 1;
  3   assert(b == 2);

没有哪一位软件工程师希望断言被触发!

然而,如果采用上图中的简单系统结构,断言确实会被触发。理解这一点的关键在于:a最初被CPU 1所拥有,而CPU 0在执行a = 1时,将a的新值存储在CPU 0的Write buffer中。 在这个简单系统中,触发断言的事件顺序可能如下: 1.CPU 0 开始执行a = 1。 2.CPU 0在缓存中查找“a”,并且发现缓存缺失。 3.因此,CPU 0发送一个“读使无效(read-invalidate message)”消息,以获得包含“a”的独享缓存行。 4.CPU 0将“a”记录到存储缓冲区。 5.CPU 1接收到“读使无效”消息,它通过发送缓存行数据,并从它的缓存行中移除数据来响应这个消息。 6.CPU 0开始执行b = a + 1。 7.CPU 0从CPU 1接收到缓存行,它仍然拥有一个为“0”的“a”值。 8.CPU 0从它的缓存中读取到“a”的值,发现其值为0。 9.CPU 0将存储队列中的条目应用到最近到达的缓存行,设置缓存行中的“a”的值为1。 10.CPU 0将前面加载的“a”值0加1,并存储该值到包含“b”的缓存行中(假设已经被CPU 0所拥有)。 11.CPU 0 执行assert(b == 2),并引起错误。 针对这种情况,硬件设计者对软件工程师还是给予了必要的同情。他们会对系统进行稍许的改进,如下图:

在调整后的架构中,每个CPU在执行加载操作时,将考虑(或者嗅探)它的Writebuffer。这样,在前面执行顺序的第8步,将在存储缓冲区中为“a”找到正确的值1 ,因此最终的“b”值将是2,这正是我们期望的。 Write buffer带来的第二个困扰,是违反了全局内存序。考虑如下的代码顺序,其中变量“a”、“b”的初始值是0。

代码语言:javascript
复制
  1 void foo(void)
  2 {
  3   a = 1;
  4   b = 1;
  5 }
  6
  7 void bar(void)
  8 {
  9   while (b == 0) continue;
 10   assert(a == 1);
 11 }

假设CPU 0执行foo(),CPU1执行bar(),再进一步假设包含“a”的缓存行仅仅位于CPU1的缓存中,包含“b”的缓存行被CPU 0所拥有。那么操作顺序可能如下: 1.CPU 0 执行a = 1。缓存行不在CPU0的缓存中,因此CPU0将“a”的新值放到Write buffer,并发送一个“读使无效”消息。 2.CPU 1 执行while (b == 0) continue,但是包含“b”的缓存行不在它的缓存中,因此它发送一个“读”消息。 3.CPU 0 执行 b = 1,它已经拥有了该缓存行(换句话说,缓存行要么已经处于“modified”,要么处于“exclusive”状态),因此它存储新的“b”值到它的缓存行中。 4.CPU 0 接收到“读”消息,并且发送缓存行中的最近更新的“b”的值到CPU1,同时将缓存行设置为“shared”状态。 5.CPU 1 接收到包含“b”值的缓存行,并将其值写到它的缓存行中。 6.CPU 1 现在结束执行while (b ==0) continue,因为它发现“b”的值是1,它开始处理下一条语句。 7.CPU 1 执行assert(a == 1),并且,由于CPU 1工作在旧的“a”的值,因此断言验证失败。 8.CPU 1 接收到“读使无效”消息,并且发送包含“a”的缓存行到CPU 0,同时在它的缓存中,将该缓存行变成无效。但是已经太迟了。 9.CPU 0 接收到包含“a”的缓存行,并且及时将存储缓冲区的数据保存到缓存行中,CPU1的断言失败受害于该缓存行。 请注意,“内存屏障”已经在这里隐隐约约露出了它锋利的爪子!!!!

三、使无效队列又是为了解决什么问题?

一波未平,另一波再起。

问题的复杂性还不仅仅在于Writebuffer,因为仅仅有Write buffer,硬件还会形成严重的性能瓶颈。

问题在于,每一个核的Writebuffer相对而言都比较小,这意味着执行一段较小的存储操作序列的CPU,很快就会填满它的Writebuffer。此时,CPU在能够继续执行前,必须等待Cache刷新操作完成,以清空它的Write buffer。

清空Cache是一个耗时的操作,因为必须要在所在CPU之间广播MESI消息(使无效消息),并等待对这些MESI消息的响应。为了加快MESI消息响应速度,CPU设计者增加了使无效队列。也就是说,CPU将接收到的使无效消息暂存起来,在发送使无效消息应答时,并不真正将Cache中的值无效。而是等待在合适的时候,延迟使无效操作。

下图是增加了使无效队列的系统结构:

将一个条目放进使无效队列,实际上是由CPU承诺:在发送任何与该缓存行相关的MESI协议消息前,处理该条目。在Cache竞争不太剧烈的情况下,CPU会很出色地完成此事。

使无效队列带来的问题是:在没有真正将Cache无效之前,就告诉其他CPU已经使无效了。这多少有一点欺骗的意思。然而现代CPU确实是这样设计的。

这个事实带来了额外的内存乱序的机会,看看如下示例: 假设“a”和“b”被初始化为0,“a”是只读的(MESI“shared”状态),“b”被CPU 0拥有(MESI“exclusive”或者“modified”状态)。然后假设CPU 0执行foo()而CPU1执行bar(),代码片段如下:

代码语言:javascript
复制
  1 void foo(void)
  2 {
  3   a = 1;
  4   smp_mb();
  5   b = 1;
  6 }
  7
  8 void bar(void)
  9 {
 10   while (b == 0) continue;
 11   assert(a == 1);
 12 }

操作顺序可能如下: 1.CPU 0执行a = 1。在CPU0中,相应的缓存行是只读的,因此CPU 0将“a”的新值放入存储缓冲区,并发送一个“使无效”消息,这是为了使CPU1的缓存中相应的缓存行失效。 2.CPU 1执行while (b == 0)continue,但是包含“b”的缓存行不在它的缓存中,因此它发送一个“读”消息。 3.CPU 1接收到CPU 0的“使无效”消息,将它排队,并立即响应该消息。 4.CPU 0接收到来自于CPU 1的响应消息,因此它放心的通过第4行的smp_mb(),从存储缓冲区移动“a”的值到缓存行。 5.CPU 0执行b = 1。它已经拥有这个缓存行(也就是说,缓存行已经处于“modified”或者“exclusive”状态),因此它将“b”的新值存储到缓存行中。 6.CPU 0接收到“读”消息,并且发送包含“b”的新值的缓存行到CPU 1,同时在自己的缓存中,标记缓存行为“shared”状态。 7.CPU 1接收到包含“b”的缓存行并且将其应用到本地缓存。 8.CPU 1现在可以完成while (b ==0) continue,因为它发现“b”的值为1,接着处理下一条语句。 9.CPU 1执行assert(a == 1),并且,由于旧的“a”值还在CPU 1的缓存中,因此陷入错误。 10.虽然陷入错误,CPU 1处理已经排队的“使无效”消息,并且(迟到)在自己的缓存中刷新包含“a”值的缓存行。

四、内存屏障

既然硬件设计者通过Write buffer和使无效队列引入了额外的内存乱序问题,那么就应当为软件工程师提供某种方法来解决这个问题。即使相应的解决方法会折磨软件工程师。

答案就是内存屏障。对于Linux内核资深工程师来说,这个答案也显得比较沉重,它太折磨人了:)

我们先看看Write buffer一节中,触发断言的例子,应该怎么修改。 在那个例子中,硬件设计者不能直接帮助我们,因为 CPU没有办法识别那些相关联的变量(例子中的a和b),更不用说它们如何关联。因此,硬件设计者提供内存屏障指令,以允许软件告诉CPU这些关系的存在。程序必须修改,以包含内存屏障:

代码语言:javascript
复制
 1 void foo(void)
  2 {
  3   a = 1;
  4   smp_mb();
  5   b = 1;
  6 }
  7
  8 void bar(void)
  9 {
 10   while (b == 0) continue;
 11   assert(a == 1);
 12 }

内存屏障smp_mb()将导致CPU在刷新后续的缓存行(包含b的缓存行)之前,前面的Write buffer被先刷新。在继续处理之前,CPU可能采取的动作是:

1、简单的停顿下来,直到存储缓冲区变成空; 2、也可能是使用存储缓冲区来持有后续的存储操作,直到前面所有的存储缓冲区已经被保存到缓存行中。 理解其中第2点,能够帮助我们理解“内存屏障”这个单词的来历!! 后一种情况下,操作序列可能如下所示: 1.CPU 0执行a= 1。缓存行不在CPU0的缓存中,因此CPU 0将“a”的新值放到存储缓冲中,并发送一个“读使无效”消息。 2.CPU 1 执行while(b == 0) continue,但是包含“b”的缓存行不在它的缓存中,因此它发送一个“读”消息。 3.CPU 0执行smp_mb(),并标记当前所有存储缓冲区的条目。(也就是说a = 1这个条目)。 4.CPU 0执行b= 1。它已经拥有这个缓存行了。(也就是说, 缓存行已经处于“modified”或者“exclusive”状态),但是在存储缓冲区中存在一个标记条目。因此,它不将“b”的新值存放到缓存行,而是存放到存储缓冲区中。(但是“b”不是一个标记条目)。 5.CPU 0接收“读”消息,随后发送包含原始“b”值的缓存行给CPU1。它也标记该缓存行的复制为“shared”状态。 6.CPU 1读取到包含“b”的缓存行,并将它复制到本地缓存中。 7.CPU 1现在可以装载“b”的值了,但是,由于它发现其值仍然为“0”,因此它重复执行while语句。“b”的新值被安全的隐藏在CPU0的存储缓冲区中。 8.CPU 1接收到“读使无效”消息,发送包含“a”的缓存行给CPU 0,并且使它的缓存行无效。 9.CPU 0接收到包含“a”的缓存行,使用存储缓冲区的值替换缓存行,将这一行设置为“modified”状态。 10.由于被存储的“a”是存储缓冲区中唯一被smp_mb()标记的条目,因此CPU0能够存储“b”的新值到缓存行中,除非包含“b”的缓存行当前处于“shared”状态。 11.CPU 0发送一个“使无效”消息给CPU 1。 12.CPU 1接收到“使无效”消息,使包含“b”的缓存行无效,并且发送一个“使无效应答”消息给 CPU 0。 13.CPU 1执行while(b == 0) continue,但是包含“b”的缓存行不在它的缓存中,因此它发送一个“读”消息给 CPU 0。 14.CPU 0接收到“使无效应答”消息,将包含“b”的缓存行设置成“exclusive”状态。CPU 0现在存储新的“b”值到缓存行。 15.CPU 0接收到“读”消息,同时发送包含新的“b”值的缓存行给 CPU 1。它也标记该缓存行的复制为“shared”状态。 16.CPU 1接收到包含“b”的缓存行,并将它复制到本地缓存中。 17.CPU 1现在能够装载“b”的值了,由于它发现“b”的值为1,它退出while循环并执行下一条语句。 18.CPU 1执行assert(a== 1),但是包含“a”的缓存行不在它的缓存中。一旦它从CPU0获得这个缓存行,它将使用最新的“a”的值,因此断言语句将通过。

正如你看到的那样,这个过程涉及不少工作。即使某些事情从直觉上看是简单的操作,就像“加载a的值”这样的操作,都会包含大量复杂的步骤。

前面提到的,其实是写端的屏障,它解决Write buffer引入的内存乱序。接下来我们看看读端的屏障,它解决使无效队列引入的内存乱序。

要避免使无效队列例子中的错误,应当再使用读端内存屏障: 读端内存屏障指令能够与使无效队列交互,这样,当一个特定的CPU执行一个内存屏障时,它标记无效队列中的所有条目,并强制所有后续的装载操作进行等待,直到所有标记的条目都保存到CPU的Cache中。因此,我们可以在bar函数中添加一个内存屏障,如下:

代码语言:javascript
复制
 1 void foo(void)
  2 {
  3   a = 1;
  4   smp_mb();
  5   b = 1;
  6 }
  7
  8 void bar(void)
  9 {
 10   while (b == 0) continue;
 11   smp_mb();
 12   assert(a == 1);
 13 }

有了这个变化后,操作顺序可能如下:

1.CPU 0执行a= 1。相应的缓存行在CPU0的缓存中是只读的,因此CPU0将“a”的新值放入它的存储缓冲区,并且发送一个“使无效”消息以刷新CPU1相应的缓存行。 2.CPU 1 执行while(b == 0) continue,但是包含“b”的缓存行不在它的缓存中,因此它发送一个“读”消息。 3.CPU 1 接收到 CPU 0的“使无效”消息,将它排队,并立即响应它。 4.CPU 0 接收到CPU1的响应,因此它放心的通过第4行的smp_mb()语句,将“a”从它的存储缓冲区移到缓存行。 5.CPU 0 执行b= 1。它已经拥有该缓存行(换句话说, 缓存行已经处于“modified”或者“exclusive”状态),因此它存储“b”的新值到缓存行。 6.CPU 0 接收到“读”消息,并且发送包含新的“b”值的缓存行给CPU1,同时在自己的缓存中,标记缓存行为“shared”状态。 7.CPU 1 接收到包含“b”的缓存行并更新到它的缓存中。 8.CPU 1 现在结束执行while (b == 0) continue,因为它发现“b”的值为 1,它处理下一条语句,这是一条内存屏障指令。 9.CPU 1 必须停顿,直到它处理完使无效队列中的所有消息。 10.CPU 1 处理已经入队的“使无效”消息,从它的缓存中使无效包含“a”的缓存行。 11.CPU 1 执行assert(a== 1),由于包含“a”的缓存行已经不在它的缓存中,它发送一个“读”消息。 12.CPU 0 以包含新的“a”值的缓存行响应该“读”消息。 13.CPU 1 接收到该缓存行,它包含新的“a”的值1,因此断言不会被触发。

即使有很多MESI消息传递,CPU最终都会正确的应答。这一节阐述了CPU设计者为什么必须格外小心地处理它们的缓存一致性优化操作。

但是,这里真的需要一个读端内存屏障么?在assert()之前,不是有个循环么?

难道在循环结束之前,会执行assert(a == 1)?

对此有疑问的读者,您需要补充一点关于猜测(冒险)执行的背景知识!可以找CPU参考手册看看。简单的说,在循环的时候,a== 1这个比较条件,有可能会被CPU预先加载a的值到流水线中。临时结果不会被保存到Cache或者Write buffer中,而是在CPU流水线中的临时结果寄存器中暂存起来 。

这是不是非常的反直觉?然而事实就是如此。

对CPU世界中反直觉的东西有兴趣的朋友,甚至可以看看量子力学方面的书,量子计算机真的需要懂量子力学。让《深入理解并行编程》一书中提到的“薛定谔的猫”来烧一下脑,这只猫已经折磨了无数天才的大脑。除了霍金,还有爱因斯坦的大脑!

五、关于内存屏障进一步的思考

本文仅仅从硬件的角度,引申出内存屏障。其目的是为了后续文章中,更好的讲解RCU。因此,并不会对内存屏障进行深入的剖析。但是,对于理解RCU来说,本文中的内存屏障知识已经可以了。

更深入的思考包括:

1、读屏障、写屏障、读依赖屏障的概念 2、各个体系架构中,屏障的实现、及其微妙的差别 3、深入思考内存屏障是否是必须的,有没有可能通过修改硬件,让屏障不再有用? 4、内存屏障的传递性,这是Linux系统中比较微妙而难于理解的概念。 5、单核架构中的屏障,是为了解决什么问题?怎么使用? 6、屏障在内核同步原语中的使用,满足了什么样的同步原语语义?

感兴趣的读者,可以参考如下资料:

1、我在CLK 2015大会上关于内存屏障的演讲: http://download.csdn.net/user/xiebaoyou 2、《深入理解并行编程》中文版本: http://item.jd.com/12109309.html

文章来源于微信公众号 Linuxer (ID:linuxdev)

本文仅代表作者观点,不代

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、内存Cache还有哪些不足?
  • 二、Write buffer是为了解决什么问题?
  • 三、使无效队列又是为了解决什么问题?
  • 四、内存屏障
  • 五、关于内存屏障进一步的思考
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档