深入理解 Android 消息机制原理

导语: 本文讲述的是Android的消息机制原理,从Java到Native代码进行了梳理,并结合其中使用到的Epoll模型予以介绍。

Android的消息传递,是系统的核心功能,对于如何使用相信大家都已经相当熟悉了,这里简单提一句。我们可以粗糙的认为消息机制中关键的几个类的功能如下:

Handler:消息处理者

Looper:消息调度者

MessageQueue:存放消息的地方

使用过程:

Looper.prepare > #$%^^& > Looper.loop(死循环) --- loop到一个消息 > Handler处理

好了,我们直接看源码吧。

Java层

消息机制是伴随线程的,也就是说上面的几个类在可以在任何一个线程中都有实例的。

先看Looper吧。以主线程为例,Android进程在初始化,会调用prepareMainLooper

public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            ...
            sMainLooper = myLooper();
        }
    }

 private static void prepare(boolean quitAllowed) {
        ...
        sThreadLocal.set(new Looper(quitAllowed));
    }

 private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

以上几个方法就是Looper初始化,如果是主线程Looper会创建一个不可退出的MessageQueue,并把looper实例放入线程独立(ThreadLocal)变量中。

Looper#loop

public static void loop() {
        final Looper me = myLooper();
        final MessageQueue queue = me.mQueue;
        for (;;) {
            Message msg = queue.next(); 
            if (msg == null) {
                return;
            }
            ...
            try {
                msg.target.dispatchMessage(msg);
            } 
            ...
            msg.recycleUnchecked();
        }
    }

Looper prepare后就可以loop了,loop非常简单,一直去queue中拿消息就好了,拿到了交给target也就是Handler处理。大家有可能会奇怪这种死循环,执行起来不会太sb粗暴了吗?其实这个解决方式在queue.next!!!后面再讲。

Handler#dispatchMessage

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

handler收到后,如果发现message的callback不为空,则只处理callback。(提一句,我们用的很多的handler.post(Runnable),其实这个Runnable就是这里的callback,也就是说post的Runnable实质上是一个优先级很高的Message),如果没有则尝试交给handler本身的callback处理(handler初始化的时候可以用callback方式构造),再没有才到我们常用的handleMessage方法,这里就是我们经常重写的方法。

再说说消息的发送,一般handler会调用sendMessage方法,但是最终这个方法还是会跑到这里

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

再交给MessageQueue

boolean enqueueMessage(Message msg, long when) {
        。。。
        synchronized (this) {
            。。。
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    。。。
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            if (needWake){
               nativeWake(mPtr);
            }
        }
        return true;
    }

MessageQueue会把消息插入队列,并依次改变队列中各个消息的指针。

咦,好像只用Java层貌似就能把整个消息机制说通了,native代码在哪儿?有何用呢?

但是,刚才提到了Looper初始化的时候也会新建一个MessageQueue

MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }

好了,我们第一个native方法出来了。这时候我们可以猜得到,MessageQueue才是整个消息机制的核心!

Native层

接上面Java层的代码,MessageQueue构造的时候会调一个nativeInit。

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
    。。。
}

 NativeMessageQueue::NativeMessageQueue() :
        mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
    mLooper = Looper::getForThread();
    if (mLooper == NULL) {
        mLooper = new Looper(false);
        Looper::setForThread(mLooper);
    }
}

native层调用init方法后,会在native层构建一个native Looper!来看看native Looper的初始化

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
    ...
    rebuildEpollLocked();
}

这里创建了一个eventfd,代码来自最新的8.0,这部分和5.0 pipe管道的mWakeReadPipeFd和mWakeWritePipeFd稍微有点不一样,前者是等待/响应,后者是读取/写入。只是android选取方式的不同而已,这块就不细说。

void Looper::rebuildEpollLocked() {
    。。。
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); 
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
    。。。
}

再到rebuildEpollLocked这个方法中,可以看到通过epoll_create创建了一个epoll专用的文件描述符,EPOLL_SIZE_HINT表示mEpollFd上能监控的最大文件描述符数。最后调用epoll_ctl监控mWakeEventFd文件描述符的Epoll事件,即当mWakeEventFd中有内容可读时,就唤醒当前正在等待的线程.。

这里不了解的人可能听着晕,上面这么一大段一句话概括就是:Android native层用了Epoll模型。什么是Epoll模型呢?我先简单介绍一下。

Epoll(必看!!!)

为什么要引入呢?

在Looper.loop的时候提到了,android不会简单粗暴地真的执行啥都没干的死循环。刚才说了,问题出在queue.next。Epoll干的事就是: 如果你的queue中没有消息可执行了,好了你可以歇着了,等有消息的我再告诉你。这个queue.next就是“阻塞”(休眠)在这里。

Epoll简单介绍

1、传统的阻塞型I/O(一边写,一边读),一个线程只能处理一个一个IO流。

2、如果一个线程想要处理多个流,可以采用了非阻塞、轮询I/O方式,但是传统的非阻塞处理多个流的时候,会遍历所有流,但是如果所有流都没数据,就会白白浪费CPU。

。。。

于是出现了select和epoll两种常见的代理方式。

3、select就是那种无差别轮询的代理方式。epoll可以理解为Event poll,也就是说代理者会代理流的时候也伴随着事件,因此有了对应事件,就可以避免无差别轮询了。

4、其通常的操作有:epoll_create(创建一个epoll)、epoll_ctl(往epoll中增加/删除某一个流的某一个事件)、epoll_wait(在一定时间内等待事件的发生)

 eventItem.events = EPOLLIN;
eventItem.data.fd = mWakeEventFd;
int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);

好了,我们结合Looper初始化的代码来读一下epoll在这里干了什么吧。

我直接翻译了:往mEpollFd代理中、注册、一个叫mWakeEventFd流、的数据流入事件(EPOLLIN)

这样大家应该懂了吧。。。

接上MessageQueue在初始化后,在native创建了一个Looper。

我们继续消息的发送和提取在native层的表现。其实native层主要负责的是消息的调度,比如说何时阻塞、何时唤醒线程,避免CPU浪费。

native发送

发送在native比较简单,handler发送消息后,会到MessageQueue的enqueueMessage,此时在线程阻塞的情况下,会调用nativeWake来唤起线程。

void NativeMessageQueue::wake() {
    mLooper->wake();
}

 void Looper::wake() {
    。。。
    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
      。。。。
    }
}

这里TEMP_FAILURE_RETRY是一个宏定义,顾名思义,就是不断地尝试往mWakeEventFd流里面写一个无用数据直到成功,以此来唤醒queue.next。这部分就不多说了。

native消息提取

也就是queue.next

 Message next() {
        。。。
        for (;;) {
           。。。
            nativePollOnce(ptr, nextPollTimeoutMillis);
           。。。
        }
    }

可以看到,又是一个死循环(阻塞)。继续往下看

void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    。。。
    mLooper->pollOnce(timeoutMillis);
    。。。
}

mLooper->pollOnce

mLooper->pollInner

int Looper::pollInner(int timeoutMillis) {
    。。。
    int result = POLL_WAKE;
    mPolling = true;
    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
    
    mPolling = false;
    mLock.lock();

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        } 
        。。。
    }
    。。。
    mLock.unlock();
    。。。
    return result;
}

在这里,我们注意到epoll_wait方法,这里会得到一段时间内(结合消息计算得来的)收到的事件个数,这里对于queue来说就是空闲(阻塞)状态。过了这个时间后,看看事件数,如果为0,则意味着超时。否则,遍历所有的事件,看看有没有mWakeEventFd,且是EPOLLIN事件的,有的话就真正唤醒线程、解除空闲状态。

消息机制在native层的主要表现就是这些。

最后,画了一个粗糙、且不太准确图仅供参考学习

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏码匠的流水账

聊聊kafka client chunkQueue 与 MaxLag值

前面一篇文章讨论了ConsumerFetcherManager的MaxLag与ConsumerOffsetChecker的lag值的区别。但是关于MaxLag的...

461
来自专栏乐沙弥的世界

Oracle 阻塞(blocking blocked)

   阻塞是DBA经常碰到的情形,尤其是不良的应用程序设计的阻塞将导致性能严重下降直至数据库崩溃。对DBA而言,有必要知道如何定位到当前系统有哪些阻塞,到底谁是...

622
来自专栏Java架构解析

深入理解Java中的底层阻塞原理及实现

Information Technology Solutions as a Presentation

100
来自专栏7号代码

Android应用界面开发——Handler(实现倒计时)

当一个程序第一次启动时,Android会同时启动一条主线程(Main Thread),主线程主要负责处理与UI相关的事件,所以,主线程通常又被叫做UI线程。

912
来自专栏菩提树下的杨过

dubbox 增加google-gprc/protobuf支持

好久没写东西了,今年实在太忙,基本都在搞业务开发,晚上来补一篇,作为今年的收官博客。google-rpc 正式发布以来,受到了不少人的关注,这么知名的rpc框架...

5638
来自专栏developerHaoz 的安卓之旅

Android 一起来看看面试必问的消息机制

Android 消息机制的主要是指的是 Handler 的运行机制以及 Handler 所附带的 MessageQueue 和 Looper 的工作过程,这三者...

783
来自专栏ml

hdu----(2222)Keywords Search(ac自动机)

Keywords Search Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32...

3347
来自专栏高性能服务器开发

后台C++开发你一定要知道的条件变量

今天因为工作需要,需要帮同事用C语言(不是C++)写一个生产者消费者的任务队列工具库,考虑到不能使用任何第三库和C++的任何特性,所以我将任务队列做成一个链表,...

3074
来自专栏Linyb极客之路

并发编程之Semaphore

一、简介 Semaphore(信号量)是用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理的使用公共资源。很多年以来,我都觉得从字面上很难理解...

4098
来自专栏Java编程技术

使用线程池时候当程序结束时候记得调用shutdown关闭线程池

日常开发中为了便于线程的有效复用,线程池是经常会被用的工具,然而线程池使用完后如果不调用shutdown会导致线程池资源一直不会被释放。下面通过简单例子来说明该...

1402

扫码关注云+社区