学习笔记TF065: TensorFlowOnSpark

Hadoop生态大数据系统分为Yam、 HDFS、MapReduce计算框架。TensorFlow分布式相当于MapReduce计算框架,Kubernetes相当于Yam调度系统。TensorFlowOnSpark,利用远程直接内存访问(Remote Direct Memory Access,RDMA)解决存储功能和调度,实现深度学习和大数据融合。TensorFlowOnSpark(TFoS),雅虎开源项目。https://github.com/yahoo/TensorFlowOnSpark 。支持ApacheSpark集群分布式TensorFlow训练、预测。TensorFlowOnSpark提供桥接程序,每个Spark Executor启动一个对应TensorFlow进程,通过远程进程通信(RPC)交互。

TensorFlowOnSpark架构。TensorFlow训练程序用Spark集群运行,管理Spark集群步骤:预留,在Executor执行每个TensorFlow进程保留一个端口,启动数据消息监听器。启动,在Executor启动TensorFlow主函数。数据获取,TensorFlow Readers和QueueRunners机制直接读取HDFS数据文件,Spark不访问数据;Feeding,SparkRDD 数据发送TensorFlow节点,数据通过feed_dict机制传入TensorFlow计算图。关闭,关闭Executor TensorFlow计算节点、参数服务节点。Spark Driver->Spark Executor->参数服务器->TensorFlow Core->gRPC、RDMA->HDFS数据集。http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-tensorflowonspark-distributed-deep

TensorFlowOnSpark MNIST。https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_standalone 。Standalone模式Spark集群,一台计算机。安装 Spark、Hadoop。部署Java 1.8.0 JDK。下载Spark2.1.0版 http://spark.apache.org/downloads.html 。下载Hadoop2.7.3版 http://hadoop.apache.org/#Download+Hadoop 。0.12.1版本支持较好。 修改配置文件,设置环境变量,启动Hadoop:$HADOOP_HOME/sbin/start-all.sh。检出TensorFlowOnSpark源代码:

git clone --recurse-submodules https://github.com/yahoo/TensorFlowOnSpark.git
cd TensorFlowOnSpark
git submodule init
git submodule update --force
git submodule foreach --recursive git clean -dfx

源代码打包,提交任务使用:

cd TensorflowOnSpark/src
zip -r ../tfspark.zip *

设置TensorFlowOnSpark根目录环境变量:

cd TensorFlowOnSpark
export TFoS_HOME=$(pwd)

启动Spark主节点(master):

$(SPARK_HOME)/sbin/start-master.sh

配置两个工作节点(worker)实例,master-spark-URL连接主节点:

export MASTER=spark://$(hostname):7077
export SPARK_WORKER_INSTANCES=2
export CORES_PER_WORKER=1
export TOTAL_CORES=$(($(CORES_PER_WORKER)*$(SPARK_WORKER_INSTANCES)))
$(SPARK_HOME)/sbin/start-slave.sh -c $CORES_PER_WORKER -m 3G $(MASTER)

提交任务,MNIST zip文件转换为HDFS RDD 数据集:

$(SPARK_HOME)/bin/spark-submit \
--master $(MASTER) --conf spark.ui.port=4048 --verbose \
$(TFoS_HOME)/examples/mnist/mnist_data_setup.py \
--output examples/mnist/csv \
--format csv

查看处理过的数据集:

hadoop fs -ls hdfs://localhost:9000/user/libinggen/examples/mnist/csv

查看保存图片、标记向量:

hadoop fs -ls hdfs://localhost:9000/user/libinggen/examples/mnist/csv/train/labels

把训练集、测试集分别保存RDD数据。 https://github.com/yahoo/TensorFlowOnSpark/blob/master/examples/mnist/mnist_data_setup.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy
import tensorflow as tf
from array import array
from tensorflow.contrib.learn.python.learn.datasets import mnist
def toTFExample(image, label):
  """Serializes an image/label as a TFExample byte string"""
  example = tf.train.Example(
    features = tf.train.Features(
      feature = {
        'label': tf.train.Feature(int64_list=tf.train.Int64List(value=label.astype("int64"))),
        'image': tf.train.Feature(int64_list=tf.train.Int64List(value=image.astype("int64")))
      }
    )
  )
  return example.SerializeToString()
def fromTFExample(bytestr):
  """Deserializes a TFExample from a byte string"""
  example = tf.train.Example()
  example.ParseFromString(bytestr)
  return example
def toCSV(vec):
  """Converts a vector/array into a CSV string"""
  return ','.join([str(i) for i in vec])
def fromCSV(s):
  """Converts a CSV string to a vector/array"""
  return [float(x) for x in s.split(',') if len(s) > 0]
def writeMNIST(sc, input_images, input_labels, output, format, num_partitions):
  """Writes MNIST image/label vectors into parallelized files on HDFS"""
  # load MNIST gzip into memory
  # MNIST图像、标记向量写入HDFS
  with open(input_images, 'rb') as f:
    images = numpy.array(mnist.extract_images(f))
  with open(input_labels, 'rb') as f:
    if format == "csv2":
      labels = numpy.array(mnist.extract_labels(f, one_hot=False))
    else:
      labels = numpy.array(mnist.extract_labels(f, one_hot=True))
  shape = images.shape
  print("images.shape: {0}".format(shape))          # 60000 x 28 x 28
  print("labels.shape: {0}".format(labels.shape))   # 60000 x 10
  # create RDDs of vectors
  imageRDD = sc.parallelize(images.reshape(shape[0], shape[1] * shape[2]), num_partitions)
  labelRDD = sc.parallelize(labels, num_partitions)
  output_images = output + "/images"
  output_labels = output + "/labels"
  # save RDDs as specific format
  # RDDs保存特定格式
  if format == "pickle":
    imageRDD.saveAsPickleFile(output_images)
    labelRDD.saveAsPickleFile(output_labels)
  elif format == "csv":
    imageRDD.map(toCSV).saveAsTextFile(output_images)
    labelRDD.map(toCSV).saveAsTextFile(output_labels)
  elif format == "csv2":
    imageRDD.map(toCSV).zip(labelRDD).map(lambda x: str(x[1]) + "|" + x[0]).saveAsTextFile(output)
  else: # format == "tfr":
    tfRDD = imageRDD.zip(labelRDD).map(lambda x: (bytearray(toTFExample(x[0], x[1])), None))
    # requires: --jars tensorflow-hadoop-1.0-SNAPSHOT.jar
    tfRDD.saveAsNewAPIHadoopFile(output, "org.tensorflow.hadoop.io.TFRecordFileOutputFormat",
                                keyClass="org.apache.hadoop.io.BytesWritable",
                                valueClass="org.apache.hadoop.io.NullWritable")
#  Note: this creates TFRecord files w/o requiring a custom Input/Output format
#  else: # format == "tfr":
#    def writeTFRecords(index, iter):
#      output_path = "{0}/part-{1:05d}".format(output, index)
#      writer = tf.python_io.TFRecordWriter(output_path)
#      for example in iter:
#        writer.write(example)
#      return [output_path]
#    tfRDD = imageRDD.zip(labelRDD).map(lambda x: toTFExample(x[0], x[1]))
#    tfRDD.mapPartitionsWithIndex(writeTFRecords).collect()
def readMNIST(sc, output, format):
  """Reads/verifies previously created output"""
  output_images = output + "/images"
  output_labels = output + "/labels"
  imageRDD = None
  labelRDD = None
  if format == "pickle":
    imageRDD = sc.pickleFile(output_images)
    labelRDD = sc.pickleFile(output_labels)
  elif format == "csv":
    imageRDD = sc.textFile(output_images).map(fromCSV)
    labelRDD = sc.textFile(output_labels).map(fromCSV)
  else: # format.startswith("tf"):
    # requires: --jars tensorflow-hadoop-1.0-SNAPSHOT.jar
    tfRDD = sc.newAPIHadoopFile(output, "org.tensorflow.hadoop.io.TFRecordFileInputFormat",
                              keyClass="org.apache.hadoop.io.BytesWritable",
                              valueClass="org.apache.hadoop.io.NullWritable")
    imageRDD = tfRDD.map(lambda x: fromTFExample(str(x[0])))
  num_images = imageRDD.count()
  num_labels = labelRDD.count() if labelRDD is not None else num_images
  samples = imageRDD.take(10)
  print("num_images: ", num_images)
  print("num_labels: ", num_labels)
  print("samples: ", samples)
if __name__ == "__main__":
  import argparse
  from pyspark.context import SparkContext
  from pyspark.conf import SparkConf
  parser = argparse.ArgumentParser()
  parser.add_argument("-f", "--format", help="output format", choices=["csv","csv2","pickle","tf","tfr"], default="csv")
  parser.add_argument("-n", "--num-partitions", help="Number of output partitions", type=int, default=10)
  parser.add_argument("-o", "--output", help="HDFS directory to save examples in parallelized format", default="mnist_data")
  parser.add_argument("-r", "--read", help="read previously saved examples", action="store_true")
  parser.add_argument("-v", "--verify", help="verify saved examples after writing", action="store_true")

args = parser.parse_args() print("args:",args) sc = SparkContext(conf=SparkConf().setAppName("mnist_parallelize")) if not args.read:

    # Note: these files are inside the mnist.zip file
    writeMNIST(sc, "mnist/train-images-idx3-ubyte.gz", "mnist/train-labels-idx1-ubyte.gz", args.output + "/train", args.format, args.num_partitions)
    writeMNIST(sc, "mnist/t10k-images-idx3-ubyte.gz", "mnist/t10k-labels-idx1-ubyte.gz", args.output + "/test", args.format, args.num_partitions)
  if args.read or args.verify:
    readMNIST(sc, args.output + "/train", args.format)

提交训练任务,开始训练,在HDFS生成mnist_model,命令:

${SPARK_HOME}/bin/spark-submit \
--master ${MASTER} \
--py-files ${TFoS_HOME}/examples/mnist/spark/mnist_dist.py \
--conf spark.cores.max=${TOTAL_CORES} \
--conf spark.task.cpus=${CORES_PER_WORKER} \
--conf spark.executorEnv.JAVA_HOME="$JAVA_HOME" \
${TFoS_HOME}/examples/mnist/spark/mnist_spark.py \
--cluster_size ${SPARK_WORKER_INSTANCES} \
--images examples/mnist/csv/train/images \
--labels examples/mnist/csv/train/labels \
--format csv \
--mode train \
--model mnist_model

mnist_dist.py 构建TensorFlow 分布式任务,定义分布式任务主函数,启动TensorFlow主函数map_fun,数据获取方式Feeding。获取TensorFlow集群和服务器实例:

cluster, server = TFNode.start_cluster_server(ctx, 1, args.rdma)

TFNode调用tfspark.zip TFNode.py文件。

mnist_spark.py文件是训练主程序,TensorFlowOnSpark部署步骤:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pyspark.context import SparkContext
from pyspark.conf import SparkConf
import argparse
import os
import numpy
import sys
import tensorflow as tf
import threading
import time
from datetime import datetime
from tensorflowonspark import TFCluster
import mnist_dist
sc = SparkContext(conf=SparkConf().setAppName("mnist_spark"))
executors = sc._conf.get("spark.executor.instances")
num_executors = int(executors) if executors is not None else 1
num_ps = 1
parser = argparse.ArgumentParser()
parser.add_argument("-b", "--batch_size", help="number of records per batch", type=int, default=100)
parser.add_argument("-e", "--epochs", help="number of epochs", type=int, default=1)
parser.add_argument("-f", "--format", help="example format: (csv|pickle|tfr)", choices=["csv","pickle","tfr"], default="csv")
parser.add_argument("-i", "--images", help="HDFS path to MNIST images in parallelized format")
parser.add_argument("-l", "--labels", help="HDFS path to MNIST labels in parallelized format")
parser.add_argument("-m", "--model", help="HDFS path to save/load model during train/inference", default="mnist_model")
parser.add_argument("-n", "--cluster_size", help="number of nodes in the cluster", type=int, default=num_executors)
parser.add_argument("-o", "--output", help="HDFS path to save test/inference output", default="predictions")
parser.add_argument("-r", "--readers", help="number of reader/enqueue threads", type=int, default=1)
parser.add_argument("-s", "--steps", help="maximum number of steps", type=int, default=1000)
parser.add_argument("-tb", "--tensorboard", help="launch tensorboard process", action="store_true")
parser.add_argument("-X", "--mode", help="train|inference", default="train")
parser.add_argument("-c", "--rdma", help="use rdma connection", default=False)
args = parser.parse_args()
print("args:",args)
print("{0} ===== Start".format(datetime.now().isoformat()))
if args.format == "tfr":
  images = sc.newAPIHadoopFile(args.images, "org.tensorflow.hadoop.io.TFRecordFileInputFormat",
                              keyClass="org.apache.hadoop.io.BytesWritable",
                              valueClass="org.apache.hadoop.io.NullWritable")
  def toNumpy(bytestr):
    example = tf.train.Example()
    example.ParseFromString(bytestr)
    features = example.features.feature
    image = numpy.array(features['image'].int64_list.value)
    label = numpy.array(features['label'].int64_list.value)
    return (image, label)
  dataRDD = images.map(lambda x: toNumpy(str(x[0])))
else:
  if args.format == "csv":
    images = sc.textFile(args.images).map(lambda ln: [int(x) for x in ln.split(',')])
    labels = sc.textFile(args.labels).map(lambda ln: [float(x) for x in ln.split(',')])
  else: # args.format == "pickle":
    images = sc.pickleFile(args.images)
    labels = sc.pickleFile(args.labels)
  print("zipping images and labels")
  dataRDD = images.zip(labels)
#1.为在Executor执行每个TensorFlow进程保留一个端口
cluster = TFCluster.run(sc, mnist_dist.map_fun, args, args.cluster_size, num_ps, args.tensorboard, TFCluster.InputMode.SPARK)
#2.启动Tensorflow主函数
cluster.start(mnist_dist.map_fun, args)
if args.mode == "train":
  #3.训练
  cluster.train(dataRDD, args.epochs)
else:
  #3.预测
  labelRDD = cluster.inference(dataRDD)
  labelRDD.saveAsTextFile(args.output)
#4.关闭Executor TensorFlow计算节点、参数服务节点
cluster.shutdown()
print("{0} ===== Stop".format(datetime.now().isoformat()))

预测命令:

${SPARK_HOME}/bin/spark-submit \
--master ${MASTER} \
--py-files ${TFoS_HOME}/examples/mnist/spark/mnist_dist.py \
--conf spark.cores.max=${TOTAL_CORES} \
--conf spark.task.cpus=${CORES_PER_WORKER} \
--conf spark.executorEnv.JAVA_HOME="$JAVA_HOME" \
${TFoS_HOME}/examples/mnist/spark/mnist_spark.py \
--cluster_size ${SPARK_WORKER_INSTANCES} \
--images examples/mnist/csv/test/images \
--labels examples/mnist/csv/test/labels \
--mode inference \
--format csv \
--model mnist_model \
--output predictions

还可以Amazon EC2运行及在Hadoop集群采用YARN模式运行。

参考资料: 《TensorFlow技术解析与实战》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏生信宝典

分子对接简明教程 (4)

文件格式解释 PDB文件 (详细格式描述) 基本信息部分 HEADER记录: 包括分子的分类、提交日期、PDB ID TITLE记录: 为该结构的描述,如果有多...

4327
来自专栏点滴积累

geotrellis使用(二十八)栅格数据色彩渲染(多波段真彩色)

目录 前言 实现过程 总结 一、前言        上一篇文章介绍了如何使用Geotrellis渲染单波段的栅格数据,已然很是头疼,这几天不懈努力之后工作又进了...

3705
来自专栏王小雷

Spark学习之Spark Streaming(9)

Spark学习之Spark Streaming(9) 1. Spark Streaming允许用户使用一套和批处理非常接近的API来编写流式计算应用,这就可以大...

24010
来自专栏高爽的专栏

登录之验证码

       产生验证码,MakeCertPic.java: public class MakeCertPic { // 验证码图片中可以出现的字符集,可...

2790
来自专栏GIS讲堂

dojo chart生成函数

1123
来自专栏何俊林

【独家】一种手机上实现屏幕录制成gif的方案

前言:一直以来,很多做apk演示效果时,通过图片的方式,总是没有看起来那样炫丽和灵动。如果能在手机上,直接通过录制屏幕,而变成gif。那可是省去了好多时间。进而...

2337
来自专栏全球人工智能的专栏

TensorFlow 的 c ++ 实践及各种坑!

本文重点介绍 tensorflow C++ 服务化过程中实现方式及遇到的各种问题。

3.7K2
来自专栏曾子骄的专栏

Tensorflow c++ 实践及各种坑

众所周知,python 在开发效率、易用性上有着巨大的优势,但作为一个解释性语言,在性能方面还是存在比较大的缺陷,在各类AI服务化过程中,采用 python 作...

11.5K4
来自专栏CreateAMind

多目标的强化学习教程-两篇均有代码

2092
来自专栏Android小菜鸡

Andorid pcm转码wav

参考文章:https://blog.csdn.net/hesong1120/article/details/79043482

2762

扫码关注云+社区

领取腾讯云代金券