干货:最受欢迎编程语言c与大数据开发实践

IEEE Spectrum的第三次“最受欢迎编程语言”中,C语言居首,有人说是大数据赢了。本文将探讨c与大数据的开发实践。大数据是使用工具和技术处理大量和复杂数据集合的术语。能够处理大量数据的技术称为MapReduce。

何时使用MapReduce

MapReduce特别适合涉及大量数据的问题。它通过将工作分成更小的块,然后可以被多个系统处理。由于MapReduce将一个问题分片并行工作,与传统系统相比,解决方案会更快。

大概有如下场景会应用到MapReduce:

1 计数和统计 2 整理 3 过滤 4 排序

Apache Hadoop

在本文中,我们将使用Apache Hadoop。

开发MapReduce解决方案,推荐使用Hadoop,它已经是事实上的标准,同时也是开源免费的软件。

另外在Amazon,Google和Microsoft等云提供商租用或搭建Hadoop集群。

还有其他多个优点:

可扩展:可以轻松清加新的处理节点,而无需更改一行代码

成本效益:不需要任何专门和奇特的硬件,因为软件在正常的硬件都运行正常

灵活:无模式。可以处理任何数据结构 ,甚至可以组合多个数据源,而不会有很多问题。

容错:如果有节点出现问题,其它节点可以接收它的工作,整个集群继续处理。

另外,Hadoop容器还是支持一种称为“流”的应用程序,它为用户提供了选择用于开发映射器和还原器脚本语言的自由度。

本文中我们将使用PHP做为主开发语言。

Hadoop安装 

Apache Hadoop的安装配置超出了本文范围。您可以根据自己的平台,在线轻松找到很多文章。为了保持简单,我们只讨论大数据相关的事。

映射器(Mapper)

映射器的任务是将输入转换成一系列的键值对。比如在字计数器的情况下,输入是一系列的行。我们按单词将它们分开,把它们变成键值对(如key:word,value:1),看起来像这样:

the      1
water    1
on       1
on       1
water    1
on       1
...      1

然后,这些对然后被发送到reducer以进行下一步骤。

reducer

reducer的任务是检索(排序)对,迭代并转换为所需输出。 在单词计数器的例子中,取单词数(值),并将它们相加得到一个单词(键)及其最终计数。如下:

water 2
the   1
on    3

mapping和reducing的整个过程看起来有点像这样,请看下列之图表:

使用PHP做单词计数器

我们将从MapReduce世界的“Hello World”的例子开始,那就是一个简单的单词计数器的实现。 我们将需要一些数据来处理。我们用已经公开的书Moby Dick来做实验。

执行以下命令下载这本书:

wget http://www.gutenberg.org/cache ... 1.txt

在HDFS(Hadoop分布式文件系统)中创建一个工作目录

hadoop dfs -mkdir wordcount

我们的PHP代码从mapper开始

#!/usr/bin/php
<?php
    // iterate through lines
    while($line = fgets(STDIN)){
        // remove leading and trailing
        $line = ltrim($line);
        $line = rtrim($line);

        // split the line in words
        $words = preg_split('/\s/', $line, -1, PREG_SPLIT_NO_EMPTY);
        // iterate through words
        foreach( $words as $key ) {
            // print word (key) to standard output
            // the output will be used in the
            // reduce (reducer.php) step
            // word (key) tab-delimited wordcount (1)
            printf("%s\t%d\n", $key, 1);
        }
    }
?>

下面是 reducer 代码。

#!/usr/bin/php
<?php
    $last_key = NULL;
    $running_total = 0;

    // iterate through lines
    while($line = fgets(STDIN)) {
        // remove leading and trailing
        $line = ltrim($line);
        $line = rtrim($line);
        // split line into key and count
        list($key,$count) = explode("\t", $line);
        // this if else structure works because
        // hadoop sorts the mapper output by it keys
        // before sending it to the reducer
        // if the last key retrieved is the same
        // as the current key that have been received
        if ($last_key === $key) {
            // increase running total of the key
            $running_total += $count;
        } else {
            if ($last_key != NULL)
                // output previous key and its running total
                printf("%s\t%d\n", $last_key, $running_total);
            // reset last key and running total
            // by assigning the new key and its value
            $last_key = $key;
            $running_total = $count;
        }
    }
?>

你可以通过使用某些命令和管道的组合来在本地轻松测试脚本。

head -n1000 pg2701.txt | ./mapper.php | sort | ./reducer.php

我们在Apache Hadoop集群上运行它:

hadoop jar /usr/hadoop/2.5.1/libexec/lib/hadoop-streaming-2.5.1.jar \
 -mapper "./mapper.php"
 -reducer "./reducer.php"
 -input "hello/mobydick.txt"
 -output "hello/result"

输出将存储在文件夹hello / result中,可以通过执行以下命令查看

hdfs dfs -cat hello/result/part-00000

计算年均黄金价格

下一个例子是一个更实际的例子,虽然数据集相对较小,但是相同的逻辑可以很容易地应用于具有数百个数据点的集合上。 我们将尝试计算过去五十年的黄金年平均价格。

我们下载数据集:

wget https://raw.githubusercontent. ... a.csv

在HDFS(Hadoop分布式文件系统)中创建一个工作目录

hadoop dfs -mkdir goldprice

将已下载的数据集复制到HDFS

hadoop dfs -copyFromLocal ./data.csv goldprice/data.csv

我的reducer看起来像这样

#!/usr/bin/php
<?php
    // iterate through lines
    while($line = fgets(STDIN)){
        // remove leading and trailing
        $line = ltrim($line);
        $line = rtrim($line);

        // regular expression to capture year and gold value
        preg_match("/^(.*?)\-(?:.*),(.*)$/", $line, $matches);

        if ($matches) {
            // key: year, value: gold price
            printf("%s\t%.3f\n", $matches[1], $matches[2]);
        }
    }
?>

reducer也略有修改,因为我们需要计算项目数量和平均值。

#!/usr/bin/php
<?php
    $last_key = NULL;
    $running_total = 0;
    $running_average = 0;
    $number_of_items = 0;

    // iterate through lines
    while($line = fgets(STDIN)) {
        // remove leading and trailing
        $line = ltrim($line);
        $line = rtrim($line);

        // split line into key and count
        list($key,$count) = explode("\t", $line);

        // if the last key retrieved is the same
        // as the current key that have been received
        if ($last_key === $key) {
            // increase number of items
            $number_of_items++;
            // increase running total of the key
            $running_total += $count;
            // (re)calculate average for that key
            $running_average = $running_total / $number_of_items;
        } else {
            if ($last_key != NULL)
                // output previous key and its running average
                printf("%s\t%.4f\n", $last_key, $running_average);
            // reset key, running total, running average
            // and number of items
            $last_key = $key;
            $number_of_items = 1;
            $running_total   = $count;
            $running_average = $count;
        }
    }

    if ($last_key != NULL)
        // output previous key and its running average
        printf("%s\t%.3f\n", $last_key, $running_average);
?>

像单词统计样例一样,我们也可以在本地测试

head -n1000 data.csv | ./mapper.php | sort | ./reducer.php

最终在hadoop集群上运行它

hadoop jar /usr/hadoop/2.5.1/libexec/lib/hadoop-streaming-2.5.1.jar \
 -mapper "./mapper.php"
 -reducer "./reducer.php"
 -input "goldprice/data.csv"
 -output "goldprice/result"

查看平均值

hdfs dfs -cat goldprice/result/part-00000

小奖励:生成图表

我们经常会将结果转换成图表。 对于这个演示,我将使用gnuplot,你可以使用其它任何有趣的东西。

首先在本地返回结果:

hdfs dfs -get goldprice/result/part-00000 gold.dat

创建一个gnu plot配置文件(gold.plot)并复制以下内容

# Gnuplot script file for generating gold prices
set terminal png
set output "chart.jpg"
set style data lines
set nokey
set grid
set title "Gold prices"
set xlabel "Year"
set ylabel "Price"
plot "gold.dat"

生成图表:

gnuplot gold.plot

这会生成一个名为chart.jpg的文件。看起来像这样:

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CSDN技术头条

大数据实时处理实战

随着互联网时代的发展,运营商作为内容传送的管道服务商,在数据领域具有巨大的优势,如何将这些数据转化为价值,越来越被运营商所重视。 运营商的大数据具有体量大,种类...

44210
来自专栏向治洪

Android ClassLoader详解

我们知道不管是插件化还是组件化,都是基于系统的ClassLoader来设计的。只不过Android平台上虚拟机运行的是Dex字节码,一种对class文件优化的产...

25410
来自专栏cloudskyme

5招教你把握Java性能监控(转自51testing)

很多开发者觉得自己懂Java编程,事实是大多数开发人员都只领会到了Java平台的皮毛,所学也只够应付工作。作者将深度挖掘Java平台的核心功能,揭示一些鲜为人知...

4107
来自专栏FreeBuf

挖洞经验|看我如何挖到了一个价值5K刀的谷歌“404页面”

大家别慌,这是一篇很短的文章…文章虽短,但希望能给大家日常挖洞带来灵感或启发! 在今年一月份的某一天,作为一个非常喜欢搞事情的人,当时的我正在尝试寻找Googl...

2279
来自专栏DannyHoo的专栏

iOS开发中内存泄漏检测工具--MLeaksFinder

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010105969/article/details/...

852
来自专栏个人分享

Spark Job的提交与task本地化分析(源码阅读八)

  我们又都知道,Spark中任务的处理也要考虑数据的本地性(locality),Spark目前支持PROCESS_LOCAL(本地进程)、NODE_LOCAL...

682
来自专栏企鹅号快讯

Java 9 逆天的十大新特性

在介绍 Java 9 之前,我们先来看看 Java 成立到现在的所有版本。 1990 年初,最初被命名为 Oak; 1995 年 5 月 23 日,Java 语...

1965
来自专栏重庆的技术分享区

PySpark简介

Apache Spark是一个大数据处理引擎,与MapReduce相比具有多个优势。通过删除Hadoop中的大部分样板代码,Spark提供了更大的简单性。此外,...

1962
来自专栏互扯程序

Java 9 逆天的十大新特性

KS Knowledge Sharing 知识分享 现在是资源共享的时代,同样也是知识分享的时代,如果你觉得本文能学到知识,请把知识与别人分享。 在介绍...

2106
来自专栏LuckQI

Java大数据学习~Hadoop初识一了解其架构

723

扫码关注云+社区