caffe随记(九)---利用FCN和已有的model进行图像语义分割

1、下载caffemodel

本例中我们使用的是pascalcontext-fcn32的模型,这个下载链接在它的文件夹里有,就是url那个文件

下载  pascalcontext-fcn32s-heavy.caffemodel 这个文件

2、增加python的路径

本次我使用的方法是 vim ~/.bashrc

在最后一行添加python路径,如下图,请根据自己的路径修改路径

3、创建deploy.prototxt

因为32s文件夹中是没有这个deploy.prototxt文件的。而我们一会儿要用到,所以我们可以根据train或者val来稍加修改即可。

比如把train.prototxt的data layer进行修改

我把我的变形金刚输入法一不小心截图截上了…………

直接 cp ./train.prototxt  ./deploy.prototxt

然后 vim deploy.prototxt进行修改,如下所示:

更改之后的数据层如我上面的截图所示

4、修改infer.py

其实我们主要就是用这个infer.py文件进行分割的,为了避免我把原始的infer.py改动,我就复制了一个到fcn32s这个文件夹中,这样无论我怎么改都不会破坏原始的文件 了

我们先来看看原始的文件的内容:

import numpy as np
from PIL import Image

import caffe

# load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe
im = Image.open('pascal/VOC2010/JPEGImages/2007_000129.jpg')  //这个就是我们输入文件的路径,一会儿应该进行修改
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= np.array((104.00698793,116.66876762,122.67891434))
in_ = in_.transpose((2,0,1))

# load net
net = caffe.Net('voc-fcn8s/deploy.prototxt', 'voc-fcn8s/fcn8s-heavy-pascal.caffemodel', caffe.TEST) //这里是我们需要用到的网络模型和caffemodel,也要改
# shape for input (data blob is N x C x H x W), set data
net.blobs['data'].reshape(1, *in_.shape)
net.blobs['data'].data[...] = in_
# run net and take argmax for prediction
net.forward()
out = net.blobs['score'].data[0].argmax(axis=0)

所以对我上面注释的两个地方进行修改:

要注意我是把infer.py复制了一个到fcn32s文件夹中的,所以你们的路径要根据自己的路径来设置合适。

而且我也把待分割图片放入了fcn32s文件夹中了。

修改之后如下所示:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt   //加了一行这个
import caffe

# load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe
im = Image.open('71.jpg')        //我已经把一个名为71.jpg的图像文件放进了我的当前fcn32s的目录下
in_ = np.array(im, dtype=np.float32)
in_ = in_[:,:,::-1]
in_ -= np.array((104.00698793,116.66876762,122.67891434))
in_ = in_.transpose((2,0,1))

# load net
net = caffe.Net('./deploy.prototxt', './pascalcontext-fcn32s-heavy.caffemodel', caffe.TEST)  //然后也是把deploy和caffemodel准备好了
# shape for input (data blob is N x C x H x W), set data
net.blobs['data'].reshape(1, *in_.shape)
net.blobs['data'].data[...] = in_
# run net and take argmax for prediction
net.forward()
out = net.blobs['score'].data[0].argmax(axis=0)
plt.imshow(out,cmap='gray') //这三行都是我新加的,是处理分割后的图片
plt.axis('off')             //
plt.savefig('test.png')     //图片存为test.png 于当前目录下

5、进行分割

直接在当前目录下 输入命令: python infer.py 

然后发现报错了……错误如下所示:

QXcbConnection: Could not connect to display

然后搜了很久发现这个网页的办法成功解决了我们的问题:

https://www.douban.com/note/612063589/

也就是把最前面的几行做一下修改,结合我们的工程,我的修改如下:

import numpy as np
from PIL import Image
import matplotlib     //就是增加了这两行
matplotlib.use('Agg') //就是增加了这两行
import matplotlib.pyplot as plt
import caffe

然后就可以正常执行了,因为我连的是服务器,是纯命令行界面,不能弹出生成图片的对话框,但是可以保存图片以供查看,算是解决问题了

执行 python infer.py

最后得出一个 test.png

6、把图片copy到我的电脑上:

scp  Teeyo@192.168.0.106:~/caffe/models/fcn.berkeleyvision.org/pascalcontext-fcn32s/test.png  ./博文

再输个服务器密码就copy过来了,详细用法请百度linux语言 scp

结果如图所示,虽然我还没有想通该怎么涂上彩色,但是好歹FCN进行语义分割咱们是走了一趟了

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

GitHub项目推荐 | 用于对机器学习模型进行对抗性攻击、防御和基准测试的Python库:CleverHans 3.0.0

项目地址:https://github.com/tensorflow/cleverhans

52560
来自专栏Small Code

使用 tree 命令格式化输出目录结构

今天在写一个 Markdown 文件的时候需要将一个目录的结构表示出来,于是找了找有没有相关命令,找到一个叫做 tree 的命令,Windows 和 Linux...

33580
来自专栏网络

HTML 正文内容提取库 Boilerpipe

Boilerpipe 是一个能从 HTML 中剔除广告和其他附加信息,提取出目标信息(如正文内容、发布时间)的 Java 库。 授权协议:Apache 开发语言...

38360
来自专栏人工智能LeadAI

TensorFlow从0到1 | 第十八章: 升级手记:TensorFlow 1.3.0

《TensorFlow从0到1》写到现在,TensorFlow的版本也从当时的1.1.0迭代到了8月初发布的1.3.0。可以预见在未来很长一段时间里,它仍会持续...

31670
来自专栏自然语言处理

深度学习环境搭建

本文作者的专题《目标检测》链接:https://www.jianshu.com/c/fd1d6f784c1f 此专题的宗旨是让基础较为薄弱的新手能够顺利实现目标...

55410
来自专栏WOLFRAM

各位, 还记得昨天我们留下的问题吗? 想要求出某个区域上的最大值?

11330
来自专栏瓜大三哥

串口通信控制器的Verilog HDL实现(四) 接收模块的Verilog HDL 实现

但凡涉及到双方通信的系统,接收机的复杂度往往都是高于发送机的,对于串口通信系统也如此。在接收系统中,起始状态和数据都需要依靠接收端检测得到,为了避免毛刺影响,...

24650
来自专栏AI科技评论

开发 | GitHub项目推荐 : 用于对机器学习模型进行对抗性攻击、防御和基准测试的Python库

此资料库包含CleverHans的源代码,CleverHans是一个Python库,用于将机器学习系统中的漏洞与对抗性示例进行对比。 您可以在随附的博客上了解有...

14520
来自专栏搞前端的李蚊子

echarts柱状图标签显示不完全的问题

echarts 柱状图当x轴标签数目超过一定数目时在小尺寸设备上第一个和最后一个标签不显示(不是重叠),axisLabel设置interval:0也不起作用; ...

40330
来自专栏计算机视觉

为stackGan一个工程创建一个虚拟环境,python 2.7 tensorflow0.12-tensorflow 1.01

安装conda 下载地址:https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64...

365100

扫码关注云+社区

领取腾讯云代金券