首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >中国台湾大学林轩田机器学习技法课程学习笔记16(完结) -- Finale

中国台湾大学林轩田机器学习技法课程学习笔记16(完结) -- Finale

作者头像
红色石头
发布2017-12-28 15:16:00
5620
发布2017-12-28 15:16:00
举报

上节课我们主要介绍了Matrix Factorization。通过电影推荐系统的例子,介绍Matrix Factorization其实是一个提取用户特征,关于电影的线性模型。反过来也可以看出是关于用户的线性模型。然后,我们使用SGD对模型进行最佳化。本节课我们将对机器学习技法课程介绍过的所有内容做个总结,分成三个部分:Feature Exploitation Techniques,Error Optimization Techniques和Overfitting Elimination Techniques。

Feature Exploitation Techniques

我们在本系列课程中介绍的第一个特征提取的方法就是kernel。Kernel运算将特征转换和计算内积这两个步骤合二为一,提高了计算效率。我们介绍过的kernel有:Polynormial Kernel、Gaussian Kernel、Stump Kernel等。另外,我们可以将不同的kernels相加(transform union)或者相乘(transform combination),得到不同的kernels的结合形式,让模型更加复杂。值得一提的是,要成为kernel,必须满足Mercer Condition。不同的kernel可以搭配不同的kernel模型,比如:SVM、SVR和probabilistic SVM等,还包括一些不太常用的模型:kernel ridge regression、kernel logistic regression。使用这些kernel模型就可以将线性模型扩展到非线性模型,kernel就是实现一种特征转换,从而能够处理非常复杂的非线性模型。顺便提一下,因为PCA、k-Means等算法都包含了内积运算,所以它们都对应有相应的kernel版本。

Kernel是我们利用特征转换的第一种方法,那利用特征转换的第二种方法就是Aggregation。我们之前介绍的所有的hypothesis都可以看成是一种特征转换,然后再由这些g组合成G。我们介绍过的分类模型(hypothesis)包括:Decision Stump、Decision Tree和Gaussian RBF等。如果所有的g是已知的,就可以进行blending,例如Uniform、Non-Uniform和Conditional等方式进行aggregation。如果所有的g是未知的,可以使用例如Bagging、AdaBoost和Decision Tree的方法来建立模型。除此之外,还有probabilistic SVM模型。值得一提的是,机器学习中很多模型都是类似的,我们在设计一个机器学习模型时,应该融会贯通。

除此之外,我们还介绍了利用提取的方式,找出潜藏的特征(Hidden Features)。一般通过unsupervised learning的方法,从原始数据中提取出隐藏特征,使用权重表征。相应的模型包括:Neural Network、RBF Network、Matrix Factorization等。这些模型使用的unsupervised learning方法包括:AdaBoost、k-Means和Autoencoder、PCA等。

另外,还有一种非常有用的特征转换方法是维度压缩,即将高维度的数据降低(投影)到低维度的数据。我们介绍过的维度压缩模型包括:Decision Stump、Random Forest Tree Branching、Autoencoder、PCA和Matrix Factorization等。这些从高纬度到低纬度的特征转换在实际应用中作用很大。

Error Optimization Techniques

接下来我们将总结一下本系列课程中介绍过哪些优化技巧。首先,第一个数值优化技巧就是梯度下降(Gradient Descent),即让变量沿着其梯度反方向变化,不断接近最优解。例如我们介绍过的SGD、Steepest Descent和Functional GD都是利用了梯度下降的技巧。

而对于一些更复杂的最佳化问题,无法直接利用梯度下降方法来做,往往需要一些数学上的推导来得到最优解。最典型的例子是Dual SVM,还包括Kernel LogReg、Kernel RidgeReg和PCA等等。这些模型本身包含了很多数学上的一些知识,例如线性代数等等。除此之外,还有一些boosting和kernel模型,虽然本课程中没有提到,但是都会用到类似的数学推导和转换技巧。

如果原始问题比较复杂,求解比较困难,我们可以将原始问题拆分为子问题以简化计算。也就是将问题划分为多个步骤进行求解,即Multi-Stage。例如probabilistic SVM、linear blending、RBF Network等。还可以使用交叉迭代优化的方法,即Alternating Optim。例如k-Means、alternating LeastSqr等。除此之外,还可以采样分而治之的方法,即Divide & Conquer。例如decision tree。

Overfitting Elimination Techniques

Feature Exploitation Techniques和Error Optimization Techniques都是为了优化复杂模型,减小EinE_{in}。但是EinE_{in}太小有很可能会造成过拟合overfitting。因此,机器学习中,Overfitting Elimination尤为重要。

首先,可以使用Regularization来避免过拟合现象发生。我们介绍过的方法包括:large-margin、L2、voting/averaging等等。

除了Regularization之外,还可以使用Validation来消除Overfitting。我们介绍过的Validation包括:SV、OOB和Internal Validation等。

Machine Learning in Action

本小节介绍了林轩田老师所在的台大团队在近几年的KDDCup国际竞赛上的表现和使用的各种机器算法。融合了我们在本系列课程中所介绍的很多机器学习技法和模型。这里不再一一赘述,将相应的图片贴出来,读者自己看看吧。

ICDM在2006年的时候发布了排名前十的数据挖掘算法,如下图所示。其中大部分的算法我们在本系列的课程中都有过介绍。值得一提的是Naive Bayes算法本课程中没有涉及,贝叶斯模型在实际中应用还是挺广泛的,后续可能还需要深入学习一下。

最后,我们将所有介绍过的机器学习算法和模型列举出来:

总结

本节课主要从三个方面来对机器学习技法课程做个总结:Feature Exploitation Techniques,Error Optimization Techniques和Overfitting Elimination Techniques。最后介绍了林轩田老师带领的台大团队是如何在历届KDDCup中将很多机器学习算法模型融合起来,并获得了良好的成绩。

注明:

文章中所有的图片均来自中国台湾大学林轩田《机器学习技法》课程、

写在最后的话

历时近4个月,终于将中国台湾大学林轩田老师的《机器学习基石》和《机器学习技法》这两门课程学完了。突然的想法,开始写博客记录下学习历程,通过笔记的形式加深巩固了自己的理解。如果能对读者有些许帮助的话,那便是一大快事。笔者资历尚浅,博客中难免有疏漏和错误,欢迎各位批评指正。

积跬步以致千里,积小流以成江海!

最后,特别感谢林轩田老师!您的教学风格我很喜欢,深入浅出、寓教于乐。非常有幸能够学到您的课程!再次感谢!

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-08-21 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Feature Exploitation Techniques
  • Error Optimization Techniques
  • Overfitting Elimination Techniques
  • Machine Learning in Action
  • 总结
  • 写在最后的话
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档