前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Improving Deep Neural Networks学习笔记(三)

Improving Deep Neural Networks学习笔记(三)

作者头像
Tyan
发布2017-12-28 16:55:18
5340
发布2017-12-28 16:55:18
举报
文章被收录于专栏:SnailTyan

5. Hyperparameter tuning

5.1 Tuning process

Hyperparameters:

α\alpha, β\beta, β1,β2,ϵ\beta_1,\beta_2, \epsilon, layers, hidden units, learning rate decay, mini-batch size.

The learning rate is the most important hyperparameter to tune. β\beta, mini-batch size and hidden units is second in importance to tune.

Try random values: Don’t use a grid. Corarse to fine.

5.2 Using an appropriate scale to pick hyperparameters

Appropriate scale to hyperparameters:

α=[0.0001,1]\alpha = [0.0001, 1], r = -4 * np.random.rand(), α=10r\alpha = 10^r.

If α=[10a,10b]\alpha = [10^a, 10^b], random pick from [a, b] uniformly, and set α=10r\alpha = 10^r.

Hyperparameters for exponentially weighted average

β=[0.9,0.999]\beta = [0.9, 0.999], don’t random pick from [0.9,0.999][0.9, 0.999]. Use 1−β=[0.001,0.1]1-\beta = [0.001, 0.1], use similar method lik α\alpha.

Why don’t use linear pick? Because when β\beta is close one, even if a little change, it will have a huge impact on algorithm.

5.3 Hyperparameters tuning in practice: Pandas vs Caviar
  • Re-test hyperparamters occasionally
  • Babysitting one model(Pandas)
  • Training many models in parallel(Caviar)

6. Batch Normalization

6.1 Normalizing activations in a network

In logistic regression, normalizing inputs to speed up learning.

  1. compute meansμ=1m∑ni=1x(i)\mu = \frac {1} {m} \sum_{i=1}^n x^{(i)}
  2. subtract off the means from training set x=x−μx = x - \mu\
  3. compute the variances σ2=1m∑ni=1x(i)2\sigma ^2 = \frac {1} {m} \sum_{i=1}^n {x^{(i)}}^2
  4. normalize training set X=Xσ2X = \frac {X} {\sigma ^2}

Similarly, in order to speed up training neural network, we can normalize intermediate values in layers(z in hidden layer), it is called Batch Normalization or Batch Norm.

Implementing Batch Norm

  1. Given some intermediate value in neural network, z(1),z(2),...,z(m)z^{(1)}, z^{(2)},...,z^{(m)}
  2. compute means μ=1m∑i=1z(i)\mu = \frac {1} {m} \sum_{i=1} z^{(i)}
  3. compute the variances σ2=1m∑i=1(z(i)−μ)2\sigma ^2 = \frac {1} {m} \sum_{i=1} (z^{(i)} - \mu)^2
  4. normalize zz, z(i)=z(i)−μ(σ2+ϵ)√z^{(i)} = \frac {z^{(i)} - \mu} {\sqrt {(\sigma ^2 + \epsilon)}}
  5. compute ẑ \hat z, ẑ =γz(i)+β\hat z = \gamma z^{(i)} + \beta.

Now we have normalized Z to have mean zero and standard unit variance. But maybe it makes sense for hidden units to have a different distribution. So we use ẑ \hat z instead of zz, γ\gamma and β\beta are learnable parameters of your model.

6.2 Fitting Batch Norm into a neural network

Add Batch Norm to a network

X→Z[1]→Ẑ [1]→a[1]→Z[2]→Ẑ [2]→a[2]...X \rightarrow Z^{[1]} \rightarrow {\hat Z^{[1]}} \rightarrow {a^{[1]}} \rightarrow Z^{[2]} \rightarrow {\hat Z^{[2]}} \rightarrow {a^{[2]}}...

Parameters: W[1],b[1]W^{[1]}, b^{[1]}, W[2],b[2]...W^{[2]}, b^{[2]}... γ[1],β[1]\gamma^{[1]}, \beta^{[1]}, γ[2],β[2]...\gamma^{[2]}, \beta^{[2]}...

If you use Batch Norm, you need to computing means and subtracting means, so b[i]b^{[i]} is useless, so we can set b[i]=0b^{[i]} = 0 permanently.

6.3 Why does Batch Norm work?

Covariate Shift: You have learned a function from x→yx \rightarrow y, it works well. If the distribution of xx changes, you need to learn a new function to make it work well.

Hidden unit values change all the time, and so it’s suffering from the problem of covariate.

Batch Norm as regularization

  • Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
  • This adds some noise to the values z[l]z^{[l]} within that mini-batch. So similar to dropout, it adds some noise to each hidden layer’s activations.
  • This has a slight regularization effect.
6.4 Batch Norm at test time

In order to apply neural network at test time, come up with some seperate estimate of mu and sigma squared.

7. Multi-class classification

7.1 Softmax regression
7.2 Training a softmax classifier

Hard max.

Loss function.

Gradient descent with softmax.

8. Programming Frameworks

8.1 Deep Learning frameworks
  • Caffe/Caffe2
  • TensorFlow
  • Torch
  • Theano
  • mxnet
  • PaddlePaddle
  • Keras
  • CNTK

Choosing deep learning frameworks

  • Ease of programming (development and deployment)
  • Running speed
  • Truly open (open source with good governance)
8.2 TensorFlow

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-09-23 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 5. Hyperparameter tuning
    • 5.1 Tuning process
      • 5.2 Using an appropriate scale to pick hyperparameters
        • 5.3 Hyperparameters tuning in practice: Pandas vs Caviar
        • 6. Batch Normalization
          • 6.1 Normalizing activations in a network
            • 6.2 Fitting Batch Norm into a neural network
              • 6.3 Why does Batch Norm work?
                • 6.4 Batch Norm at test time
                • 7. Multi-class classification
                  • 7.1 Softmax regression
                    • 7.2 Training a softmax classifier
                    • 8. Programming Frameworks
                      • 8.1 Deep Learning frameworks
                        • 8.2 TensorFlow
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档