LeNet在caffe中的实现分析

本文主要是对Caffe中mnist数据集上训练的LeNet模型进行结构分析和可视化。

import caffe
import numpy as np
import matplotlib.pyplot as plt

# 定义LeNet模型信息
deploy = 'lenet.prototxt'
model = 'lenet_iter_10000.caffemodel'

# 加载模型
net = caffe.Net(deploy, model, caffe.TEST)

# 计算均值
# blob = caffe.proto.caffe_pb2.BlobProto()
# bin_mean = open(mean_file, 'rb' ).read()
# blob.ParseFromString(bin_mean)
# arr = np.array(caffe.io.blobproto_to_array(blob))
# npy_mean = arr[0]
# mu = npy_mean.mean(1).mean(1)

# init transformer
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
# transformer.set_mean('data', mu)
transformer.set_raw_scale('data', 255)
# transformer.set_channel_swap('data', (2, 1, 0))

# get certain layer feature
def init(pimg, lay_name):
    global transformer
    global net
    image = caffe.io.load_image(pimg, color = False)
    image
    transformed_image = transformer.preprocess('data', image)
    net.blobs['data'].data[...] = transformed_image
    output = net.forward()
    result = output[lay_name]
    return result
# Test
result = init('test.jpg', 'prob')
print result.shape
print result
(1, 10)
[[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]]

LeNet网络的所有layer以及layer的输出数据 data: 输入图片数据大小为28*28 conv1: 20个卷积核,卷积之后feature map大小24*24 pool1: pooling后feature map大小变为12*12, 共20层 conv2: 50个卷积核, 卷积之后feature map大小为8*8 pool2: pooling后feature map大小变为4*4, 共50层 ip1: 全连接层一, 500个结点 ip2: 全连接层二, 10个结点 prob: 对ip2进行softmax

备注: conv1之后得到20个feature map, conv2有50个卷积核, 每个卷积核在20个feature map卷积之后, 20个卷积之后的feature map对应位置上的点的数据累加之后取激活函数(ReLU)得到该卷积核的对应的feature map, 因此conv2执行之后的feature map个数为50, 而不是50*20.

# all layer name and blob shape
# blob shape is (batch_size, channel_dim, height, width).
for layer_name, blob in net.blobs.iteritems():
    print layer_name + '\t' + str(blob.data.shape)
data  (1, 1, 28, 28)
conv1 (1, 20, 24, 24)
pool1 (1, 20, 12, 12)
conv2 (1, 50, 8, 8)
pool2 (1, 50, 4, 4)
ip1 (1, 500)
ip2 (1, 10)
prob  (1, 10)

LeNet网络的权重(weights + biases) conv1: 20个卷积核, weights大小为5*5, 20个biases conv2: 50个卷积核, weights大小为5*5, 50个biases ip1: conv2之后得到50个4*4大小的feature map, 排列起来大小为800, 与ip1的500个结点进行全连接, weights个数为500*800, biases个数为500 ip2: ip1的500个结点与ip2的10个结点进行全连接, weights个数为500*10, biases个数为10

# all layer name and parameters shape
# param[0] is weights, param[1] is biases
# weights shape is (output_channels, input_channels, filter_height, filter_width)
# biases shape is (output_channels,)
for layer_name, param in net.params.iteritems():
    print layer_name + '\t' + str(param[0].data.shape) + '\t' + str(param[1].data.shape)
conv1 (20, 1, 5, 5) (20,)
conv2 (50, 20, 5, 5)  (50,)
ip1 (500, 800)  (500,)
ip2 (10, 500) (10,)

numpy pad padding分为四部分 第一部分: (0, n ** 2 - data.shape[0]), 补充方阵的缺少的部分, 0表示前面不补, 后面补n ** 2 - data.shape[0]列 第二部分: (0, 1)表示每个filter的前面不补, 后面补1列, filter补了一行 第三部分: (0, 1)表示每个filter的前面不补, 后面补1列, filter补了一列 第四部分: (0, 0)剩下的不补充数据

# param(weights) visualization
def visualization(data):
    # normalize data for display
    data = (data - data.min()) / (data.max() - data.min())

    # force the number of filters to be square
    n = int(np.ceil(np.sqrt(data.shape[0])))

    # add some space between filters
    padding = (((0, n ** 2 - data.shape[0]), (0, 1), (0, 1)) + ((0, 0),) * (data.ndim - 3)) 
    data = np.pad(data, padding, mode = 'constant', constant_values = 1)

    # tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    plt.imshow(data, cmap='gray')
    plt.axis('off')
    plt.show()
# feature map visualization
feature_map = net.blobs['conv1'].data[0]
visualization(feature_map)
# filter visualization
filters = net.params['conv1'][0].data
visualization(filters.reshape(20, 5, 5))

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏https://www.cnblogs.com/L

【机器学习】--贝叶斯网络

当多个特征属性之间存在着某种相关关系的时候,使用朴素贝叶斯算法就没法解决这类问题,那么贝叶斯网络就是解决这类应用场景的一个非常好的算法。一般而言,贝叶斯网络的有...

812
来自专栏小鹏的专栏

一个隐马尔科夫模型的应用实例:中文分词

什么问题用HMM解决 现实生活中有这样一类随机现象,在已知现在情况的条件下,未来时刻的情况只与现在有关,而与遥远的过去并无直接关系。 比如天气预测,如果我...

2867
来自专栏人工智能

模型算法基础——决策树剪枝算法(二)

在上一篇模型算法基础——决策树剪枝算法(一)中,我们介绍了误差降低剪枝(REP),今天我们继续介绍另一种后剪枝算法——悲观错误剪枝(PessimisticErr...

3207
来自专栏CDA数据分析师

R语言的三种聚类方法

摘要: 层次聚类 kmeans dbscan笔记 一、距离和相似系数 r语言中使用dist(x, method = “euclidean”,diag = FAL...

2918
来自专栏杨熹的专栏

一个隐马尔科夫模型的应用实例:中文分词

什么问题用HMM解决 现实生活中有这样一类随机现象,在已知现在情况的条件下,未来时刻的情况只与现在有关,而与遥远的过去并无直接关系。 比如天气预测,如果我们知道...

3506
来自专栏数值分析与有限元编程

可视化 | Tecplot作三角形单元后处理工具

对于有限元分析的后处理,除了单的信息,还包括单元信息,比如一个单元由哪些结点组成。Tecplot可以处理的单元类型有三角形单元,四边形单元,四面体单元和六面体单...

2934
来自专栏Coding迪斯尼

依赖反向传播改进神经网络数据处理的精确度

994
来自专栏深度学习自然语言处理

word2vec理论与实践

导读 本文简单的介绍了Google 于 2013 年开源推出的一个用于获取 word vector 的工具包(word2vec),并且简单的介绍了其中的两个训练...

2736
来自专栏算法channel

机器学习:对决策树剪枝

昨天推送中介绍了决策树的基本思想,包括从众多特征中找出最佳的分裂点,刚开始大家都是用选择这个特征后带来的信息增益为基本方法,后来发现它存在一个严重的bug,因此...

3338
来自专栏数值分析与有限元编程

矩阵方程

对于矩阵 A(n,n) 和 B(n,m) 组成的矩阵方程 [A][X] = [B] 记 X(n,m) 的第i列向量为 Xi(i = 1,2...m), 矩阵B的...

2828

扫码关注云+社区