那些年我们吹过的牛逼——人工智能

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能现在已经能实现很多功能了,比如

语音识别——李开复博士当年做的工作奠定了很多当今识别系统的基础。这里忍不住说一下,Siri本身的技术并没有特别大的亮点,真正nb的是它的模式(语音识别直接与搜索引擎结合在一起,产品体验做得好。而且关键是这样的模式能采集到更多数据,使得系统的精度越来越高)

自然语言理解——目前看到的最强的结果应该是IBM Watson。但其实我们现在用的搜索引擎、中文输入法、机器翻译(虽然其实还不怎么work)都和自然语言理解相关。这块儿不是我的专业,请 @段维斯 同学补充。

数据挖掘——随着近年数据量的疯狂增长,数据挖掘也有了长足进步。最具有代表性的是前几年著名的Netflix challenge(Netflix公司公开了自己的用户评分数据,让研究者根据这些数据对用户没看过的电影预测评分,谁先比现有系统好10%,谁就能赢100万美元)最后这一比赛成绩较好的队伍,并非是单一的某个特别nb的算法能给出精确的结果,而是把大量刻画了不同方面的模型混合在一起,进行最终的预测。

计算机视觉——目前越来越多的领域跟视觉有关。大家可能一开始想到的都是自动驾驶。虽然大家都在说googleX的无人车, 但实际上现在无论是商业上,还是技术整合上最成功的算法是Mobile Eye的辅助驾驶系统。这个公司也是目前computer vision领域最挣钱的公司。

从实现新功能方面说,视觉的发展的趋势主要有两方面,A) 集成更多的模块,从问题的各种不同方面,解决同一个问题(比如Mobile Eye,就同时使用了数十种方法,放到一起最终作出决策) B) 使用新的信息,解决一个原来很难的问题。这方面最好的例子是M$的Kinect,这个产品最让人拍案叫绝的就是那个红外pattern投影仪。

这里说的是数学理论,是为实现功能解决问题而存在的。与人类的智能的联系在下一节说。从这个角度,我们已经有了很多强有力的数学工具,从高斯时代的最小二乘法,到现在比较火的凸优化,其实我们解决绝大多数智能问题的套路,都可以从某种意义上转换成一个优化问题。

真正限制我们解这个优化问题的困难有以下三个:

计算复杂度——能保证完美解的算法大都是NP-hard的。如何能让一个系统在当前的硬件下“跑起来”,就需要在很多细节取巧,这是很多learning paper的核心冲突。

模型假设——所有模型都要基于一些假设,比如说,无人车会假设周围的汽车加速度有一个上限(至少不会瞬间移动吧,否则怎么闪避)绝大多数假设都不能保证绝对正确,我们只是制定那些在大多数时候合理的假设,然后基于这些假设建模(比如,在语音识别里,我们是否要假设存在背景噪声呢?如果有背景噪声,这个噪声应该符合什么特点呢?这时候无论你怎么定标准,总能找出“反例”)

数据基础——任何学习过程都需要数据的支持,无论是人类学说话学写字,还是计算机学习汽车驾驶。但是就数据采集本身来说,成功的案例并不多。大概这个世界上最强的数据采集就是google了吧。每次你搜索一个关键词,然后点进去,google就自动记录了你的行为,然后以此数据来训练自己的算法。

END

本文来自企鹅号 - o2o商城败将媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

盘点丨2016十大 AI 演讲,大牛们都发表了什么真知灼见?

新年到来,也不要忘记和 AI 科技评论一起温故而知新啊。 在刚刚落下尾声的 2016 年,许许多多的人工智能大神们站在台上分享他们的所见所感,AI 科技评论整理...

3539
来自专栏奇点大数据

AI 换脸技术——DeepFakes 概述(二)

本文由图普科技编译自 Exploring DeepFakes。 相关文章:AI 换脸技术——DeepFakes 概述(一) DeepFakes的“短板” 尽管D...

3377
来自专栏人工智能头条

自然语言处理的十个发展趋势

1433
来自专栏企鹅号快讯

深度学习如何落地安防应用?

今年,市场研究&咨询公司GrandViewResearch发布了一份深度学习市场分析报告。报告表明,2016年全球深度学习市场估值为2.72亿美元,其在自动驾驶...

2379
来自专栏PPV课数据科学社区

CCAI 2017 | 自然语言处理的十个发展趋势

近日,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办的第三届中国人工智能大会(CCAI 2017)在杭州国际会议中心盛...

2425
来自专栏新智元

【榜单】世界级机器学习专家都有谁?有关 AI 你不能不知道的6个人物

【新智元导读】本文介绍了当前最重要的6位机器学习专家,他们在机器学习方面的突破得到公认。这个榜单虽然只代表作者作为一名科技畅销书作者的认识,但应该也代表了AI ...

34510
来自专栏ATYUN订阅号

【科技】神经网络使我们能够以新的方式“读懂人脸”

面部分析软件正被用来预测性行为和安全风险。 ? 去年9月,斯坦福大学教授Michal Kosinski利用AI试图从他们脸上预测性取向时,引发了一场激烈的争论。...

3315
来自专栏AI科技评论

动态 | 微软亚洲研究院资深研究员梅涛:原来视频可以这么玩了! | CCF-GAIR 2017

7月9日,由CCF主办,雷锋网与香港中文大学(深圳)承办的CCF-GAIR 2017全球人工智能与机器人峰会进入了第三天。在CV+专场首场,微软亚洲研究院资深研...

3437
来自专栏大数据文摘

麦肯锡报告:关于深度学习的120个商业机会

1484
来自专栏华章科技

深度学习:远非人工智能的全部和未来

现在每一个人都在学习,或者正打算学习深度学习(DL),它是目前人工智能诸多流派中唯一兴起的一个。各个年龄阶段的数十万人学习着免费和收费的深度学习课程。太多的创业...

783

扫码关注云+社区