Caffe神经网络结构汇总

自2012年Alexnet赢得了ImageNet竞赛以来,深度学习(神经网络)得到了飞速发展,产生了许多的神经网络结构,本文主要总结Caffe中使用的神经网络(分类的神经网络),本文的神经网络作者都使用Caffe训练过,并在Kaggle的Intel癌症预测比赛中进行了测试与使用(top 8%)。

1. Alexnet

Alexnet,2012年ImageNet竞赛冠军,深度学习的里程碑。

网络结构地址:https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

预训练模型地址:http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel

2. Squeezenet

Squeezenet设计目标不是为了提高识别的准确率,而是希望简化网络复杂度。squeezenet的模型结构确实很小,没压缩的情况下才5M左右,而且识别的精度还可以。

网络结构地址:https://github.com/DeepScale/SqueezeNet

预训练模型地址:https://github.com/DeepScale/SqueezeNet

3. VGG系列

VGG和GoogLenet是2014年imagenet竞赛的双雄,VGG主要分为VGG16和VGG19。其网络结构与预训练模型的地址如下:

VGG16的网络结构:https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md

VGG16的预训练模型: http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel

VGG19的网络结构:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md

VGG19的预训练模型:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel

备注:上面的网络结构需要进行细微调整才能在Caffe中直接训练,主要是网络结构中的Type类型。

4. Resnet系列

Resnet网络,2015年ImageNet竞赛冠军,网络结构主要分为Resnet-50、Resnet-101、Resnet-152三种,当然也有一些其它的结构,例如Resnet-18,Resnet-14。

Github地址:https://github.com/KaimingHe/deep-residual-networks

Resnet-50、Resnet-101、Resnet-152的网络结构及预训练模型的下载地址:https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777

5. Inception系列

Inception系列是Google发明的一系列神经网络结构。

Inception-v1:

Inception-v1,即大名鼎鼎的GoogLenet,2014年ImageNet竞赛冠军。

网络结构地址:https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

预训练模型地址:http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

Inception-v2:

即Inception V1 + Batch Normalization。

网络结构地址:https://github.com/pertusa/InceptionBN-21K-for-Caffe

预训练模型地址:http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel

Inception-v3:

网络结构地址:https://pan.baidu.com/s/1boC0HEf#list/path=%2F

预训练模型地址:https://pan.baidu.com/s/1boC0HEf#list/path=%2F

Inception-v4:

网络结构地址:https://pan.baidu.com/s/1c6D150#list/path=%2F

预训练模型地址:https://pan.baidu.com/s/1c6D150#list/path=%2F

Inception-resnet-v2:

网络结构地址:https://pan.baidu.com/s/1jHPJCX4#list/path=%2F

预训练模型地址:https://pan.baidu.com/s/1jHPJCX4#list/path=%2F

6. Densenet系列

网络结构及预训练模型地址: https://github.com/liuzhuang13/DenseNetCaffe https://github.com/shicai/DenseNet-Caffe

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

AI 技术讲座精选:如何在时间序列预测中使用LSTM网络中的时间步长

Keras中的长短期记忆(LSTM)网络支持时间步长。 这就引出这样一个问题:单变量时间序列的滞后观察是否可以用作LSTM的时间步长,这样做是否能改进预测性能...

3205
来自专栏数据派THU

独家 | 从基础到实现:集成学习综合教程(附Python代码)

本文从基础集成技术讲起,随后介绍了高级的集成技术,最后特别介绍了一些流行的基于Bagging和Boosting的算法,帮助读者对集成学习建立一个整体印象。

2005
来自专栏BestSDK

谷歌开放一种新的图像分类卷积神经网络模型

为了在该领域取得更多进展,今天我们非常高兴的宣布开放 Inception-ResNet-v2,这是一个在 ILSVRC 图像分类基准上取得顶尖准确率的卷积神经网...

2329
来自专栏PPV课数据科学社区

机器学习-R-特征选择

特征选择是实用机器学习的重要一步,一般数据集都带有太多的特征用于模型构建,如何找出有用特征是值得关注的内容。 1. Feature selection: All...

3635
来自专栏量子位

一文看懂如何搭建AI应用:10周学会深度学习,还赢下5千美元

春节后第一个休息日,量子位给大家准备了一个不一样的故事。 在这个故事里,主人公David Brailovsky(就叫阿D吧)参加了一场计算机视觉比赛。这个挑战赛...

1735
来自专栏数据派THU

用Python进行机器学习(附代码、学习资源)

本文从非线性数据进行建模,带你用简便并且稳健的方法来快速实现使用Python进行机器学习。

1256
来自专栏Deep learning进阶路

深度学习论文随记(四)ResNet 残差网络-2015年Deep Residual Learning for Image Recognition

深度学习论文随记(四)ResNet 残差网络 DeepResidual Learning for Image Recognition Author:Kaimi...

3570
来自专栏AI科技评论

视频 | 英伟达发布新算法,可以重建缺失像素

AI 科技评论按:本文由雷锋字幕组编译,原标题 New AI Imaging Technique Reconstructs Photos with Realis...

812
来自专栏达观数据

达观数据基于Deep Learning的中文分词尝试(下篇)

上周分享了本文上篇,现有分词、机器学习、深度学习库Keras技术知识,下篇将详细介绍达观数据使用深度学习的分词尝试。 基于深度学习方式的分词尝试 基于上面的知识...

40112
来自专栏新智元

【让调参全部自动化】自动机器学习,神经网络自主编程(代码与诀窍)

【新智元导读】自动机器学习(AutoML)是近来很活跃的研究方向。KDnuggets 的主编 Matthew Mayo 写了一篇文章介绍了 AutoML 的概念...

3934

扫码关注云+社区