Google机器学习笔记 4-5-6 分类器

Recipes 4 Let’s Write a Pipeline

复习与强化概念

  • 监督学习基础套路
  • 例子: 一个用于举报邮件的分类器

关键在于举报新的邮件

  • Train vs Test:隔离训练集,测试集以验证训练效果
  • f(x) = y feature: x, label: y, classifier其实就是一个feature到label的函数
  • 可以从sklearn中import各种分类器进行训练,各种分类器有类似的接口

这些不同分类器都可以解决类似的问题

  • 让算法从数据中学习到底是什么
  • 拒绝手工写分类规则代码
  • 本质上,是学习feature到label,从输入到输出的函数
  • 从一个模型开始,用规则来定义函数
  • 根据训练数据调整函数参数
  • 从我们发现规律的方法中,找到model
  • 比如一条划分两类点的线就是一个分类器的model,调整参数就能得到我们想要的分类器:

Example of Neural Network

Recipes 5 Writing Our First Classifier

  • 从底层实现一个分类器

目标

实现一个K近邻(k-Nearest Neighbour)问题

K Nearest Neighbour

  • 对于一个测试点,看它最近的邻居属于那个类别
  • 考虑最近邻居的时候,我们可以综合考虑与这个点距离最近的K个点,看它们中有多少输入类别A,多少属于类别B
  • 距离:两点间的直线距离(Euclidean Distance)
  • 即考虑各个feature之间差异的平方和

实现

  • 在Lesson4的基础上进行,我们在lesson4中使用了KNeighborsClassifier()作为分类器,现在我们要实现这个分类器
  • ScrappyKNN:最简单的一个K近邻分类器
  • 接口:
    • fit:用于训练,将训练集的feature和label作为输入
    • predict: prediction,将测试集的feature作为输入,输出预测的label
  • Random Classifier
    • 随机挑一个label作为预测输出,由于我们是在三种花的结果中随机挑取一种花作为结果,所以结果大概在33%
  • KNN:
  • 设置k=1,也就是我们只考虑最近的那个点属于那个类别
  • 用scipy.spatial.distance来计算距离
  • 返回测试点最近邻的label

结论

  • 准确率:90%以上(这里也可能看出feature选得好的重要性)
  • 优点:非常简单
  • 缺点:耗时;不能表示复杂的东西;

Recipes 6 Train an Image Classifier with TensorFlow for Poets

目标

区分图片之间的差异

工具

TensorFlow for Poets

  • 高度封装
  • 效果奇佳
  • 只需要目录中的图片和目录名字作为label,不需要预设feature

数据

分类器

  • TensorFlow
  • TensorFlow擅长于Deep learning
  • 由于提取特征很困难,因为世界上的变数太多了,所以深度学习自动提取特征的功能变得很重要
  • TFLearn:高阶的机器学习库
  • Image Classifier
  • 直接从像素级数据提取特征
  • 神经网络
  • 可以学习更复杂的函数

实现

后话

  • 图像识别关键在于:Diversity and quantity
  • Diversity:样本多样性越多,对新事物的预测能力越强
  • Quantity:样本数量越多,分类器越强大

觉得我的文章对您有帮助的话,就给个star吧~

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ATYUN订阅号

如何计算McNemar检验,比较两种机器学习分类器

在1998年被广泛引用的论文中,Thomas Dietterich在训练多份分类器模型副本昂贵而且不切实际的情况下推荐了McNemar检验。

902
来自专栏新智元

【TensorFlow 谷歌神经机器翻译】从零开始打造属于你的翻译系统

【新智元导读】谷歌今天公布了一个用 TensorFlow 构建神经机器翻译(NMT)系统的教程,全面解释 seq2seq 模型,并演示如何从零开始构建 NMT ...

4634
来自专栏程序生活

动态规划算法总结动态规划基本思路算法实现实例分析参考链接

动态规划 动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决 基本思路 动态规划算法的基本思想与分治...

3324
来自专栏machine learning

LDA—主题模型

假设我们的词典中一共有 V 个词,Unigram Model就是认为上帝按照下面游戏规则产生文本的。

19310
来自专栏AI研习社

如何使用注意力模型生成图像描述?

我们的目标是用一句话来描述图片, 比如「一个冲浪者正在冲浪」。 本教程中用到了基于注意力的模型,它使我们很直观地看到当文字生成时模型会关注哪些部分。

1152
来自专栏ATYUN订阅号

深度学习:如何理解tensorflow文本蕴含的原理

文本的entailment(蕴涵)是一个简单的逻辑练习,用来判断一个句子是否可以从另一个句子推断出来。承担了文本的entailment任务的计算机程序,试图将一...

6895
来自专栏机器之心

教程 | 从头开始在Python中开发深度学习字幕生成模型

3374

Keras中带LSTM的多变量时间序列预测

像长短期记忆(Long Short-Term Memory ) LSTM 递归神经网络这样的神经网络几乎可以完美地模拟多个输入变量的问题。

3.9K7
来自专栏PPV课数据科学社区

【学习】R语言18讲(五)

? 上篇讲到了数据挖掘的质量分析,主要是对数据缺失情况,准确情况,以及数据集的结构进行探索,接下来,我们就要对数据的特征进行分析了,所谓数据的特征分析就是指数...

30911
来自专栏落影的专栏

程序员进阶之算法练习(二十四)

前言 已经有三个月未更新算法文章,大厂工作环境是步步紧逼的,使得所有的人越来越忙碌。余下的学习时间,要用于技术预研、知识面开阔、底层原理理解等等,慢慢算法只能占...

4047

扫码关注云+社区