行人重识别 Person Re-identification知识资料全集

【导读】主题荟萃知识是专知的核心功能之一,为用户提供AI领域系统性的知识学习服务。主题荟萃为用户提供全网关于该主题的精华(Awesome)知识资料收录整理,使得AI从业者便捷学习和解决工作问题!在专知人工智能主题知识树基础上,主题荟萃由专业人工编辑和算法工具辅助协作完成,并保持动态更新!另外欢迎对此创作主题荟萃感兴趣的同学,请加入我们专知AI创作者计划,共创共赢!专知为大家呈送专知主题荟萃知识资料大全集荟萃(入门/进阶/综述/视频/代码/专家等),请大家查看!专知访问www.zhuanzhi.ai, 或关注微信公众号后台回复"专知"进入专知,搜索感兴趣主题查看。此外,我们也提供该文网页桌面手机端(www.zhuanzhi.ai)完整访问,可直接点击访问收录链接地址,以及pdf版下载链接,请文章末尾查看!此为初始版本,请大家指正补充,欢迎在后台留言!欢迎大家转发分享~

行人重识别 Person Re-identification / Person Retrieval 专知荟萃

行人重识别 Person Re-identification / Person Retrieval 专知荟萃

入门学习

进阶论文及代码

Person Re-identification / Person Retrieval

Person Search

Re-ID with GAN

Vehicle Re-ID

Deep Metric Learning

Re-ID with Attributes Prediction

Video-based Person Re-Identification

Re-ranking

实战项目

教程

综述

数据集

图像数据集

Attribute相关数据集

视频相关数据集

NLP相关数据集

领域专家

入门学习

行人重识别综述

[http://www.jianshu.com/p/98cc04cca0ae?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation\]

基于深度学习的Person Re-ID(综述)

郑哲东 -Deep-ReID:行人重识别的深度学习方法

PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]

视频:[http://www.bilibili.com/video/av13796843/]

【行人识别】Deep Transfer Learning for Person Re-identification

知乎专栏:行人重识别 [https://zhuanlan.zhihu.com/personReid]

行人重识别综述:从哈利波特地图说起

行人再识别中的迁移学习:图像风格转换(Learning via Translation)

行人对齐+重识别网络

SVDNet for Pedestrian Retrieval:CNN到底认为哪个投影方向是重要的?

用GAN生成的图像做训练?Yes!

2017 ICCV 行人检索/重识别 接受论文汇总

从人脸识别 到 行人重识别,下一个风口

GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?

[https://www.zhihu.com/question/53001881/answer/170077548]

Re-id Resources

[https://wangzwhu.github.io/home/re_id_resources.html\]

行人再识别(行人重识别)【包含与行人检测的对比】

行人重识别综述(Person Re-identification: Past, Present and Future)

进阶论文及代码

Person Re-identification / Person Retrieval

intro: CVPR 2014

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Li_DeepReID_Deep_Filter_2014_CVPR_paper.pdf]

An Improved Deep Learning Architecture for Person Re-Identification

intro: CVPR 2015

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ahmed_An_Improved_Deep_2015_CVPR_paper.pdf]

github: [https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID]

Deep Ranking for Person Re-identification via Joint Representation Learning

intro: IEEE Transactions on Image Processing [TIP], 2016

arxiv: [https://arxiv.org/abs/1505.06821]

PersonNet: Person Re-identification with Deep Convolutional Neural Networks

arxiv: [http://arxiv.org/abs/1601.07255]

Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification

intro: CVPR 2016

arxiv: [https://arxiv.org/abs/1604.07528]

github: [https://github.com/Cysu/dgd_person_reid]

Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

intro: CVPR 2016

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Cheng_Person_Re-Identification_by_CVPR_2016_paper.pdf]

End-to-End Comparative Attention Networks for Person Re-identification

[https://arxiv.org/abs/1606.04404]

A Multi-task Deep Network for Person Re-identification

arxiv: [http://arxiv.org/abs/1607.05369]

Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

arxiv: [http://arxiv.org/abs/1607.08378]

A Siamese Long Short-Term Memory Architecture for Human Re-Identification

arxiv: [http://arxiv.org/abs/1607.08381]

Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification

arxiv: [https://arxiv.org/abs/1607.08378]

Person Re-identification: Past, Present and Future

[https://arxiv.org/abs/1610.02984]

Deep Learning Prototype Domains for Person Re-Identification

arxiv: [https://arxiv.org/abs/1610.05047]

Deep Transfer Learning for Person Re-identification

arxiv: [https://arxiv.org/abs/1611.05244]

A Discriminatively Learned CNN Embedding for Person Re-identification

arxiv: [https://arxiv.org/abs/1611.05666]

github[MatConvnet]: [https://github.com/layumi/2016_person_re-ID]

Structured Deep Hashing with Convolutional Neural Networks for Fast Person Re-identification

arxiv: [https://arxiv.org/abs/1702.04179]

In Defense of the Triplet Loss for Person Re-Identification

arxiv: [https://arxiv.org/abs/1703.07737]

github[Theano]: [https://github.com/VisualComputingInstitute/triplet-reid]

Beyond triplet loss: a deep quadruplet network for person re-identification

intro: CVPR 2017

arxiv: [https://arxiv.org/abs/1704.01719]

Part-based Deep Hashing for Large-scale Person Re-identification

intro: IEEE Transactions on Image Processing, 2017

arxiv: [https://arxiv.org/abs/1705.02145]

Deep Person Re-Identification with Improved Embedding

[https://arxiv.org/abs/1705.03332]

Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters

arxiv: [https://arxiv.org/abs/1705.04608]

github: [https://github.com/VisualComputingInstitute/towards-reid-tracking]

Person Re-Identification by Deep Joint Learning of Multi-Loss Classification

intro: IJCAI 2017

arxiv: [https://arxiv.org/abs/1705.04724]

Attention-based Natural Language Person Retrieval

intro: CVPR 2017 Workshop [vision meets cognition]

keywords: Bidirectional Long Short- Term Memory [BLSTM]

arxiv: [https://arxiv.org/abs/1705.08923]

Unsupervised Person Re-identification: Clustering and Fine-tuning

arxiv: [https://arxiv.org/abs/1705.10444]

github: [https://github.com/hehefan/Unsupervised-Person-Re-identification-Clustering-and-Fine-tuning]

Deep Representation Learning with Part Loss for Person Re-Identification

[https://arxiv.org/abs/1707.00798]

Pedestrian Alignment Network for Large-scale Person Re-identification

[https://raw.githubusercontent.com/layumi/Pedestrian_Alignment/master/fig2.jpg]

arxiv: [https://arxiv.org/abs/1707.00408]

github: [https://github.com/layumi/Pedestrian_Alignment]

Deep Reinforcement Learning Attention Selection for Person Re-Identification

[https://arxiv.org/abs/1707.02785]

Learning Efficient Image Representation for Person Re-Identification

[https://arxiv.org/abs/1707.02319]

Person Re-identification Using Visual Attention

intro: ICIP 2017

arxiv: [https://arxiv.org/abs/1707.07336]

Deeply-Learned Part-Aligned Representations for Person Re-Identification

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1707.07256]

What-and-Where to Match: Deep Spatially Multiplicative Integration Networks for Person Re-identification

[https://arxiv.org/abs/1707.07074]

Deep Feature Learning via Structured Graph Laplacian Embedding for Person Re-Identification

[https://arxiv.org/abs/1707.07791]

Divide and Fuse: A Re-ranking Approach for Person Re-identification

intro: BMVC 2017

arxiv: [https://arxiv.org/abs/1708.04169]

Large Margin Learning in Set to Set Similarity Comparison for Person Re-identification

intro: IEEE Transactions on Multimedia

arxiv: [https://arxiv.org/abs/1708.05512]

Multi-scale Deep Learning Architectures for Person Re-identification

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1709.05165]

Pose-driven Deep Convolutional Model for Person Re-identification

[https://arxiv.org/abs/1709.08325]

HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

intro: ICCV 2017. CUHK & SenseTime,

arxiv: [https://arxiv.org/abs/1709.09930]

github: [https://github.com/xh-liu/HydraPlus-Net]

Person Re-Identification with Vision and Language

[https://arxiv.org/abs/1710.01202]

Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification

[https://arxiv.org/abs/1710.00478]

Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

intro: CVPR 2017. CASIA

keywords: Multi-Scale Context-Aware Network [MSCAN]

arxiv: [https://arxiv.org/abs/1710.06555]

Pseudo-positive regularization for deep person re-identification

[https://arxiv.org/abs/1711.06500]

Let Features Decide for Themselves: Feature Mask Network for Person Re-identification

keywords: Feature Mask Network [FMN]

arxiv: [https://arxiv.org/abs/1711.07155]

Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification

[https://arxiv.org/abs/1711.07027]

intro: Megvii, Inc & Zhejiang University

arxiv: [https://arxiv.org/abs/1711.08184]

evaluation website: [Market1501]: [http://reid-challenge.megvii.com/]

evaluation website: [CUHK03]: [http://reid-challenge.megvii.com/cuhk03]

Region-based Quality Estimation Network for Large-scale Person Re-identification

intro: AAAI 2018

arxiv: [https://arxiv.org/abs/1711.08766]

Deep-Person: Learning Discriminative Deep Features for Person Re-Identification

[https://arxiv.org/abs/1711.10658]

A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

arxiv: [https://arxiv.org/abs/1711.10378]

github: [https://github.com/pse-ecn/pose-sensitive-embedding]

Person Search

Joint Detection and Identification Feature Learning for Person Search

intro: CVPR 2017

keywords: Online Instance Matching OIM loss function

homepage[dataset+code]:[http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html]

arxiv: [https://arxiv.org/abs/1604.01850]

paper: [http://www.ee.cuhk.edu.hk/~xgwang/PS/paper.pdf]

github[official. Caffe]: [https://github.com/ShuangLI59/person_search]

Person Re-identification in the Wild

intro: CVPR 2017 spotlight

keywords: PRW dataset

project page: [http://www.liangzheng.com.cn/Project/project_prw.html]

arxiv: [https://arxiv.org/abs/1604.02531]

github: [https://github.com/liangzheng06/PRW-baseline]

IAN: The Individual Aggregation Network for Person Search

[https://arxiv.org/abs/1705.05552]

Neural Person Search Machines

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1707.06777]

Re-ID with GAN

Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1701.07717]

github: [https://github.com/layumi/Person-reID_GAN]

Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

[https://arxiv.org/abs/1711.08565]

Vehicle Re-ID

Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1708.03918]

Deep Metric Learning

Deep Metric Learning for Person Re-Identification

intro: ICPR 2014

paper: [http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Yi-ICPR-14.pdf]

Deep Metric Learning for Practical Person Re-Identification

[https://arxiv.org/abs/1407.4979]

Constrained Deep Metric Learning for Person Re-identification

[https://arxiv.org/abs/1511.07545]

DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer

intro: TuSimple

keywords: pedestrian re-identification

arxiv: [https://arxiv.org/abs/1707.01220]

Re-ID with Attributes Prediction

Deep Attributes Driven Multi-Camera Person Re-identification

intro: ECCV 2016

arxiv: [https://arxiv.org/abs/1605.03259]

Improving Person Re-identification by Attribute and Identity Learning

[https://arxiv.org/abs/1703.07220]

Video-based Person Re-Identification

Recurrent Convolutional Network for Video-based Person Re-Identification

intro: CVPR 2016

paper: [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.pdf]

github: [https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID]

Deep Recurrent Convolutional Networks for Video-based Person Re-identification: An End-to-End Approach

[https://arxiv.org/abs/1606.01609]

Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification

intro: ICCV 2017

arxiv: [https://arxiv.org/abs/1708.02286]

Three-Stream Convolutional Networks for Video-based Person Re-Identification

[https://arxiv.org/abs/1712.01652]

Re-ranking

Re-ranking Person Re-identification with k-reciprocal Encoding

intro: CVPR 2017

arxiv: [https://arxiv.org/abs/1701.08398]

github: [https://github.com/zhunzhong07/person-re-ranking]

实战项目

intro: Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different datasets, a full set of models and evaluation metrics, as well as examples to reproduce [near] state-of-the-art results.

project page: [https://cysu.github.io/open-reid/]

github[PyTorch]: [https://github.com/Cysu/open-reid]

examples: [https://cysu.github.io/open-reid/examples/training_id.html]

benchmarks: [https://cysu.github.io/open-reid/examples/benchmarks.html]

caffe-PersonReID

intro: Person Re-Identification: Multi-Task Deep CNN with Triplet Loss

gtihub: [https://github.com/agjayant/caffe-Person-ReID]

DukeMTMC-reID_baseline Matlab

[https://github.com/layumi/DukeMTMC-reID_baseline]

Code for IDE baseline on Market-1501

[https://github.com/zhunzhong07/IDE-baseline-Market-1501]

教程

1st Workshop on Target Re-Identification and Multi-Target Multi-Camera Tracking

[https://reid-mct.github.io/]

郑哲东 -Deep-ReID:行人重识别的深度学习方法

PPT:[https://www.slideshare.net/ZhedongZheng1/deep-reid]

视频:[http://www.bilibili.com/video/av13796843/]

Person Identification in Large Scale Camera Networks Wei-Shi Zheng (郑伟诗)

[http://isee.sysu.edu.cn/~zhwshi/Research/ADL-OPEN.pdf\]

Person Re-Identification: Theory and Best Practice

[http://www.micc.unifi.it/reid-tutorial/slides/]

综述

Person Re-identification: Past, Present and Future Liang Zheng, Yi Yang, Alexander G. Hauptmann

[https://arxiv.org/abs/1610.02984]

Person Re-Identification Book

[https://link.springer.com/book/10.1007/978-1-4471-6296-4]

A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets

[http://lanl.arxiv.org/abs/1605.09653]

People reidentification in surveillance and forensics: A survey

[https://dl.acm.org/citation.cfm?doid=2543581.2543596]

数据集

Re-ID 数据集汇总

[https://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html]

图像数据集

Market-1501 Dataset 751个人,27种属性,一共约三万张图像(一人多图)

[http://www.liangzheng.org/Project/project_reid.html\]

Code for IDE baseline on Market-1501 :[https://github.com/zhunzhong07/IDE-baseline-Market-1501]

DukeMTMC-reID DukeMTMC数据集的行人重识别子集,原始数据集地址(http://vision.cs.duke.edu/DukeMTMC/) ,为行人跟踪数据集。原始数据集包含了85分钟的高分辨率视频,采集自8个不同的摄像头。并且提供了人工标注的bounding box。最终,DukeMTMC-reID 包含了 16,522张训练图片(来自702个人), 2,228个查询图像(来自另外的702个人),以及 17,661 张图像的搜索库(gallery)。并提供切割后的图像供下载。

[https://github.com/layumi/DukeMTMC-reID_evaluation\]

CUHK01, 02, 03

[http://www.ee.cuhk.edu.hk/~rzhao/\]

Attribute相关数据集

RAP

[https://link.zhihu.com/?target=http%3A//rap.idealtest.org/]

Attribute for Market-1501and DukeMTMC_reID

[https://link.zhihu.com/?target=https%3A//vana77.github.io/]

视频相关数据集

Mars

[http://liangzheng.org/Project/project_mars.html]

PRID2011

[https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/]

NLP相关数据集:

自然语言搜图像

[http://xiaotong.me/static/projects/person-search-language/dataset.html]

自然语言搜索行人所在视频

[http://www.mi.t.u-tokyo.ac.jp/projects/person_search]

领域专家

Shaogang Gong -[http://www.eecs.qmul.ac.uk/~sgg/\]

Xiaogang Wang

[http://www.ee.cuhk.edu.hk/~xgwang/\]

Weishi Zheng

[https://sites.google.com/site/sunnyweishi/]

Liang Zheng

Chen Change Loy

[https://staff.ie.cuhk.edu.hk/~ccloy/\]

Qi Tian

[http://www.cs.utsa.edu/~qitian/tian-publication-year.html\]

Shengcai Liao

[http://www.cbsr.ia.ac.cn/users/scliao/]

Rui Zhao

[http://www.ee.cuhk.edu.hk/~rzhao/\]

Yang Yang

[http://www.cbsr.ia.ac.cn/users/yyang/main.htm]

Ling Shao

Ziyan Wu

[http://wuziyan.com/]

DaPeng Chen

[http://gr.xjtu.edu.cn/web/dapengchen/home]

Horst Bischof

[https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid450s]

Niki Martinel

[http://users.dimi.uniud.it/~niki.martinel/\]

Liang Lin

[http://hcp.sysu.edu.cn/home/]

Le An

Xiang Bai

[http://mc.eistar.net/~xbai/index.html\]

Xiaoyuan Jing

[http://mla.whu.edu.cn/plus/list.php?tid=2]

Fei Xiong

[http://robustsystems.coe.neu.edu/?q=content/research]

DaPeng Chen

[http://gr.xjtu.edu.cn/web/dapengchen/home]

特别提示-专知行人重识别主题:

本文来自企鹅号 - 专知媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI2ML人工智能to机器学习

决策树会有哪些特性?

决策树(Decision Tree)是机器学习中最常见的算法, 因为决策树的结果简单,容易理解, 因此应用超级广泛, 但是机器学习的专家们在设计决策树的时候会考...

1012
来自专栏深度学习自然语言处理

【概率笔记】条件概率这样学才快啦

比如,一个上学期间整天鬼混的学沫,根本就不好好学习,对于他而言,选择题的四个选项ABCD被他选取的概率就为1/4。而对于大学霸来说,题题都会,那么他选取每一个选...

803
来自专栏小樱的经验随笔

BZOJ 1083: [SCOI2005]繁忙的都市【Kruscal最小生成树裸题】

1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2925  Sol...

2614
来自专栏WOLFRAM

用 Mathematica 求解多项式

3884
来自专栏数据结构与算法

P1343 地震逃生

题目描述 汶川地震发生时,四川**中学正在上课,一看地震发生,老师们立刻带领x名学生逃跑,整个学校可以抽象地看成一个有向图,图中有n个点,m条边。1号点为教室,...

2845
来自专栏ACM小冰成长之路

HDU-5572-An Easy Physics Problem

ACM模版 描述 ? 题解 计算几何问题,给定一质点的位置和速度,给定一个圆柱的圆心和半径,质点移动如果撞上圆柱则发生弹性碰撞。问这个点是否可以经过另一个质点。...

1957
来自专栏Hadoop数据仓库

HAWQ + MADlib 玩转数据挖掘之(八)——聚类方法之k-means

一、聚类方法简介         所谓“物以类聚,人以群分”,其核心思想就是聚类。通过聚类,人们能意识到密集和稀疏的区域,发现全局的分布模式,以及数据属性之间有...

2525
来自专栏marsggbo

Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)

本周内容较多,故分为上下两篇文章。 本文为下篇。 一、内容概要 1. Anomaly Detection Density Estimation Proble...

2207
来自专栏IT派

Python 实现简单的导弹自动追踪

自动追踪算法,在我们设计2D射击类游戏时经常会用到,这个听起来很高大上的东西,其实也并不是军事学的专利,在数学上解决的话需要去解微分方程,

1103
来自专栏iOSDevLog

ARKit和CoreLocation

演示代码 ARKit和CoreLocation:第一部分 ARKit和CoreLocation:第二部分 ARKit和CoreLocation:第三部分

1452

扫码关注云+社区