TensorFlow 图像预处理(一) 图像编解码,图像尺寸调整

TensorFlow提供了几类图像处理函数,下面介绍图像的编码与解码,图像尺寸调整。

编码与解码

图像解码与编码:一张RGB三通道的彩色图像可以看成一个三维矩阵,矩阵中的不位置上的数字代表图像的像素值。然后图像在存储时并不是直接记录这些矩阵中的数字,而是经过了压缩编码。所以将一张图像还原成一个三维矩阵的过程就是解码的过程,反之就是编码了。其实如果大家熟悉opencv的话,imread和imwrite就是一个解码和编码的过程。 TensorFlow提供了常用图片格式的解码和编码操作,下面用一个jpg的图像演示:

import matplotlib.pyplot as plt
import tensorflow as tf


image_raw_data = tf.gfile.FastGFile('.//image//1.jpg','rb').read()

with tf.Session() as sess:
     img_data = tf.image.decode_jpeg(image_raw_data)
     print(img_data.eval())

     plt.imshow(img_data.eval())
     plt.show()

     #img_data = tf.image.convert_image_dtype(img_data,dtype = tf.float32)

     encoded_image = tf.image.encode_jpeg(img_data)
     with tf.gfile.GFile(".//image//3.jpg","wb") as f:
          f.write(encoded_image.eval())

其中: decode_jpeg函数为jpeg(jpg)图片解码的过程,对应的encode_jpeg函数为编码过程,编码后将图片重命名写入到指定的路径下。

图像尺寸调整 图像尺寸调整属于基础的图像几何变换,TensorFlow提供了几种尺寸调整的函数: tf.image.resize_images:将原始图像缩放成指定的图像大小,其中的参数method(默认值为ResizeMethod.BILINEAR)提供了四种插值算法,具体解释可以参考图像几何变换(缩放、旋转)中的常用的插值算法 tf.image.resize_image_with_crop_or_pad:剪裁或填充处理,会根据原图像的尺寸和指定的目标图像的尺寸选择剪裁还是填充,如果原图像尺寸大于目标图像尺寸,则在中心位置剪裁,反之则用黑色像素填充。 tf.image.central_crop:比例调整,central_fraction决定了要指定的比例,取值范围为(0,1],该函数会以中心点作为基准,选择整幅图中的指定比例的图像作为新的图像。

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

image_raw_data = tf.gfile.FastGFile('.//image//1.jpg','rb').read()

with tf.Session() as sess:
     img_data = tf.image.decode_jpeg(image_raw_data)
     plt.imshow(img_data.eval())
     plt.show()


     resized = tf.image.resize_images(img_data, [100, 100], method=0)
     # TensorFlow的函数处理图片后存储的数据是float32格式的,需要转换成uint8才能正确打印图片。
     print("Digital type: ", resized.dtype)
     resized = np.asarray(resized.eval(), dtype='uint8')
     # tf.image.convert_image_dtype(rgb_image, tf.float32)
     plt.imshow(resized)
     plt.show()

     croped = tf.image.resize_image_with_crop_or_pad(img_data, 100, 100)
     padded = tf.image.resize_image_with_crop_or_pad(img_data, 500, 500)
     plt.imshow(croped.eval())
     plt.show()
     plt.imshow(padded.eval())
     plt.show()

     central_cropped = tf.image.central_crop(img_data, 0.5)
     plt.imshow(central_cropped.eval())
     plt.show()

原图:

resize_images(img_data, [100, 100], method=0):

resize_image_with_crop_or_pad(img_data, 100, 100):

resize_image_with_crop_or_pad(img_data, 500, 500):

central_crop(img_data, 0.5):

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏WD学习记录

机器学习 学习笔记(12) EM算法

在实际情况中,往往会遇到未观测变量,未观测变量的学名是隐变量(latent variable)。令X表示已观测变量集,Z表示隐变量集,

723
来自专栏大学生计算机视觉学习DeepLearning

基于tensorflow实现简单卷积神经网络Lenet5

1223
来自专栏YG小书屋

简单二层神经网络介绍

1964
来自专栏Python小屋

使用决策树分类算法判断一下你的Python水平

决策树算法是一种常用的机器学习算法,既可以用于分类,也可以用于回归。决策树算法类似于程序设计语言中嵌套的多分支选择结构,根据不同的条件选择不同的分支路径,最终到...

642
来自专栏深度学习与计算机视觉

TensorFlow基本操作 实现卷积和池化

之前已经提到过图像卷积的操作和意义,并且用OpenCV中的filter2D函数实现了一些例子。OpenCV中的filter2D函数仅仅是用一个卷积核去卷积单个的...

2515
来自专栏大数据文摘

斯坦福CS231N深度学习与计算机视觉第五弹:反向传播与它的直观理解

1635
来自专栏祥子的故事

tensorflow | 维度转换

2545
来自专栏机器之心

教程 | 从字符级的语言建模开始,了解语言模型与序列建模的基本概念

选自imaddabbura 机器之心编译 你有没有想过 Gmail 自动回复是如何进行的?或者手机在你输入文本时如何对下一个词提出建议?生成文本序列的通常方式是...

3075
来自专栏mantou大数据

[机器学习实战]K-近邻算法

1. K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类。该方法的思路是:如果一个样本在特...

3455
来自专栏程序生活

Char RNN原理介绍以及文本生成实践

下面是一个利用Char RNN实现写诗的应用,代码来自来自原先比较火的项目:https://github.com/jinfagang/tensorflow_po...

681

扫码关注云+社区