pytorch学习笔记(七):pytorch hook 和 关于pytorch backward过程的理解

pytorch 的 hook 机制

在看pytorch官方文档的时候,发现在nn.Module部分和Variable部分均有hook的身影。感到很神奇,因为在使用tensorflow的时候没有碰到过这个词。所以打算一探究竟。

Variable 的 hook

register_hook(hook)

注册一个backward钩子。

每次gradients被计算的时候,这个hook都被调用。hook应该拥有以下签名:

hook(grad) -> Variable or None

hook不应该修改它的输入,但是它可以返回一个替代当前梯度的新梯度。

这个函数返回一个 句柄(handle)。它有一个方法 handle.remove(),可以用这个方法将hookmodule移除。

例子:

v = Variable(torch.Tensor([0, 0, 0]), requires_grad=True)
h = v.register_hook(lambda grad: grad * 2)  # double the gradient
v.backward(torch.Tensor([1, 1, 1]))
#先计算原始梯度,再进hook,获得一个新梯度。
print(v.grad.data)
h.remove()  # removes the hook
 2
 2
 2
[torch.FloatTensor of size 3]

nn.Module的hook

register_forward_hook(hook)

module上注册一个forward hook

这里要注意的是,hook 只能注册到 Module 上,即,仅仅是简单的 op 包装的 Module,而不是我们继承 Module时写的那个类,我们继承 Module写的类叫做 Container。 每次调用forward()计算输出的时候,这个hook就会被调用。它应该拥有以下签名:

hook(module, input, output) -> None

hook不应该修改 inputoutput的值。 这个函数返回一个 句柄(handle)。它有一个方法 handle.remove(),可以用这个方法将hookmodule移除。

看这个解释可能有点蒙逼,但是如果要看一下nn.Module的源码怎么使用hook的话,那就乌云尽散了。 先看 register_forward_hook

def register_forward_hook(self, hook):

       handle = hooks.RemovableHandle(self._forward_hooks)
       self._forward_hooks[handle.id] = hook
       return handle

这个方法的作用是在此module上注册一个hook,函数中第一句就没必要在意了,主要看第二句,是把注册的hook保存在_forward_hooks字典里。

再看 nn.Module__call__方法(被阉割了,只留下需要关注的部分):

def __call__(self, *input, **kwargs):
   result = self.forward(*input, **kwargs)
   for hook in self._forward_hooks.values():
       #将注册的hook拿出来用
       hook_result = hook(self, input, result)
   ...
   return result

可以看到,当我们执行model(x)的时候,底层干了以下几件事:

  • 调用 forward 方法计算结果
  • 判断有没有注册 forward_hook,有的话,就将 forward 的输入及结果作为hook的实参。然后让hook自己干一些不可告人的事情。

看到这,我们就明白hook签名的意思了,还有为什么hook不能修改inputoutput的原因。

小例子:

import torch
from torch import nn
import torch.functional as F
from torch.autograd import Variable

def for_hook(module, input, output):
    print(module)
    for val in input:
        print("input val:",val)
    for out_val in output:
        print("output val:", out_val)

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
    def forward(self, x):

        return x+1

model = Model()
x = Variable(torch.FloatTensor([1]), requires_grad=True)
handle = model.register_forward_hook(for_hook)
print(model(x))
handle.remove()

register_backward_hook

module上注册一个bachward hook此方法目前只能用在Module上,不能用在Container上,当Module的forward函数中只有一个Function的时候,称为Module,如果Module包含其它Module,称之为Container

每次计算moduleinputs的梯度的时候,这个hook会被调用。hook应该拥有下面的signature

hook(module, grad_input, grad_output) -> Tensor or None

如果module有多个输入输出的话,那么grad_input grad_output将会是个tuplehook不应该修改它的arguments,但是它可以选择性的返回关于输入的梯度,这个返回的梯度在后续的计算中会替代grad_input

这个函数返回一个 句柄(handle)。它有一个方法 handle.remove(),可以用这个方法将hookmodule移除。

从上边描述来看,backward hook似乎可以帮助我们处理一下计算完的梯度。看下面nn.Moduleregister_backward_hook方法的实现,和register_forward_hook方法的实现几乎一样,都是用字典把注册的hook保存起来。

def register_backward_hook(self, hook):
    handle = hooks.RemovableHandle(self._backward_hooks)
    self._backward_hooks[handle.id] = hook
    return handle

先看个例子来看一下hook的参数代表了什么:

import torch
from torch.autograd import Variable
from torch.nn import Parameter
import torch.nn as nn
import math
def bh(m,gi,go):
    print("Grad Input")
    print(gi)
    print("Grad Output")
    print(go)
    return gi[0]*0,gi[1]*0
class Linear(nn.Module):
    def __init__(self, in_features, out_features, bias=True):
        super(Linear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input):
        if self.bias is None:
            return self._backend.Linear()(input, self.weight)
        else:
            return self._backend.Linear()(input, self.weight, self.bias)

x=Variable(torch.FloatTensor([[1, 2, 3]]),requires_grad=True)
mod=Linear(3, 1, bias=False)
mod.register_backward_hook(bh) # 在这里给module注册了backward hook

out=mod(x)
out.register_hook(lambda grad: 0.1*grad) #在这里给variable注册了 hook
out.backward()
print(['*']*20)
print("x.grad", x.grad)
print(mod.weight.grad)
Grad Input
(Variable containing:
1.00000e-02 *
  5.1902 -2.3778 -4.4071
[torch.FloatTensor of size 1x3]
, Variable containing:
 0.1000  0.2000  0.3000
[torch.FloatTensor of size 1x3]
)
Grad Output
(Variable containing:
 0.1000
[torch.FloatTensor of size 1x1]
,)
['*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*', '*']
x.grad Variable containing:
 0 -0 -0
[torch.FloatTensor of size 1x3]

Variable containing:
 0  0  0
[torch.FloatTensor of size 1x3]

可以看出,grad_in保存的是,此模块Function方法的输入的值的梯度。grad_out保存的是,此模块forward方法返回值的梯度。我们不能在grad_in上直接修改,但是我们可以返回一个新的new_grad_in作为Function方法inputs的梯度。

上述代码对variablemodule同时注册了backward hook,这里要注意的是,无论是module hook还是variable hook,最终还是注册到Function上的。这点通过查看Varibleregister_hook源码和Module__call__源码得知。

Module的register_backward_hook的行为在未来的几个版本可能会改变

BP过程中Function中的动作可能是这样的

class Function:
    def __init__(self):
        ...
    def forward(self, inputs):
        ...
        return outputs
    def backward(self, grad_outs):
        ...
        return grad_ins
    def _backward(self, grad_outs):
        hooked_grad_outs = grad_outs
        for hook in hook_in_outputs:
            hooked_grad_outs = hook(hooked_grad_outs)
        grad_ins = self.backward(hooked_grad_outs)
        hooked_grad_ins = grad_ins
        for hook in hooks_in_module:
            hooked_grad_ins = hook(hooked_grad_ins)
        return hooked_grad_ins

关于pytorch run_backward()的可能实现猜测为。

def run_backward(variable, gradient):
    creator = variable.creator
    if creator is None:
        variable.grad = variable.hook(gradient)
        return 
    grad_ins = creator._backward(gradient)
    vars = creator.saved_variables
    for var, grad in zip(vars, grad_ins):
        run_backward(var, var.grad)

中间Variable的梯度在BP的过程中是保存到GradBuffer中的(C++源码中可以看到), BP完会释放. 如果retain_grads=True的话,就不会被释放

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏程序员叨叨叨

7.3 const

Cg 语言也提供 const 修辞符,与 C\C++中含义一样,被 const 所修辞的变量在初始化之后不能再去改变它的值。下面的例子程序中有一个声明为 con...

552
来自专栏十月梦想

js实现随求抓取样本数据(批量或者样本元素)

马上期末汇报学期项目了,这个居然要随机点名汇报,突然想起是否可以使用筛选数据,批量抽取样本中数据进行排序!

672
来自专栏IT开发技术与工作效率

Excel函数学习重点指南(官网)

813
来自专栏乐沙弥的世界

MySQL auto_increment_increment,auto_increment_offset 用法

    MySQL中对于表上ID自增列可以在创建表的时候来指定列上的auto_increment属性;等同于SQL server中的identity属性;Ora...

643
来自专栏深度学习思考者

matlab 数据预处理及常用操作

img_out = repmat(img,[10000 1]);%生成一个1万行的img矩阵 img=zeros(1,1024); %zeros生成为0的矩...

1919
来自专栏CreateAMind

pytorch初体验

一部分的内容在2017年1月18日Facebook发行的PyTorch相比TensorFlow、MXNet有何优势? - 罗若天的回答 - 知乎 已有。

741
来自专栏aCloudDeveloper

string 之 strchr函数 和 strstr函数(BF算法和KMP算法的应用)

Author: bakari  Date: 2012/8/9 继上篇。。。。。 下面是我写的代码与源码作的一些比较,均已严格测试通过,分别以“string 之”...

2029
来自专栏mwangblog

开始使用Octave

1334
来自专栏崔庆才的专栏

TensorFlow可视化之TensorBoard快速上手

1002
来自专栏数值分析与有限元编程

Python也能干大事

用Python做数值计算,和MATLAB一样简洁方便,关键是Python还是免费的,不用担心版权的问题。下面举几个例子。 1.计算方阵行列式 ? 在Anacon...

3219

扫码关注云+社区