CNN中各层图像大小的计算

CNN刚刚入门,一直不是很明白通过卷积或者pooling之后图像的大小是多少,看了几天之后终于搞清楚了,在这里就结合keras来说说各层图像大小是怎么计算的,给刚入门的一点启发吧!

keras中的convolution和pooling

keras我们以0.2的版本来介绍,0.1对的版本有不一样的地方。0.1的版本的border_mode可以有三种:valid,same,full,0.2版本中的只有两种少了full。

0.2版本的卷积需要指明input_shape但是不需要指明feature map的数量,0.1不需要指明input_shape但是需要指明feature map的数量。 下面具体说说几个重要参数的具体意思:

CONVOLUTION

keras.layers.convolutional.Convolution2D(nb_filter, nb_row, nb_col, init='glorot_uniform', activation='linear', weights=None, border_mode='valid', subsample=(1, 1), dim_ordering='th', W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None)

nb_filter:filter的个数 nb_row,nb_col:filter的大小(行和列) init:初始化方法 activation:激活函数 border_mode:valid 或者same,这个对下一层的运算产生影响 W_regulizer: WeightRegularizer,调整主权值矩阵的,通常使用L2 regulizer

POOLING 最常用的就是maxpooling,比如pool_size=(2, 2)就是说2*2=4个像素取值大的那个作为pooling之后的值,看下图:

keras.layers.convolutional.MaxPooling2D(pool_size=(2, 2), strides=None, border_mode='valid', dim_ordering='th')

pool_size:pooling的大小 stride:pooling的stride大小 border_mode: ‘valid’ or ‘same’ Note: ‘same’ will only work with TensorFlow for the time being dim_ordering: ‘th’ or ‘tf’. In ‘th’ mode, the channels dimension (the depth) is at index 1, in ‘tf’ mode is it at index 3

代码实例

weight_decay = 0.0001

# 使用sequentia模型
chars_model = Sequential()

# 第一层卷积,filter大小4*4,数量32个,原始图像大小36*20
chars_model.add(Convolution2D(32, 4, 4, input_shape=(1, 36, 20), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# 第二层卷积,filter大小4*4,数量32个,图像大小(36-4+1)*(20-4-1)
chars_model.add(Convolution2D(32, 4, 4, input_shape=(1, 33, 17), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# maxpooling,大小(2,2),输入大小是30*14,stride默认是None,输出大小是15*7
chars_model.add(MaxPooling2D(pool_size=(2, 2)))

# dropout防止过拟合
chars_model.add(Dropout(0.3))


# 第三层卷积,filter大小4*4,数量64个,图像大小15*7
chars_model.add(Convolution2D(64, 4, 4, input_shape=(1, 15, 7), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# 第四层卷积,filter大小4*4,数量64个,图像大小12*4,输出是10*2
chars_model.add(Convolution2D(64, 3, 3, input_shape=(1, 12, 4), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# maxpooling,大小(2,2),输入大小是12*4,stride默认是None,输出大小是5*1
chars_model.add(MaxPooling2D(pool_size=(2, 2)))

# dropout防止过拟合
chars_model.add(Dropout(0.3))


# flatten
chars_model.add(Flatten())

# 全连接,输入是上层的64个feature map,大小是5*1,输出有512个
chars_model.add(Dense(input_dim=64 * 5 * 1, output_dim=512, activation='relu'))
chars_model.add(Dropout(0.6))


# 全连接,输入是上层的输出512,softmax回归分类,总共26个类别
chars_model.add(Dense(input_dim=512, output_dim=26, activation='softmax'))

# 随机梯度下降的参数,使用momentum+decay
sgd = SGD(l2=0.0, lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True)

# 损失函数定义为对数损失(categorical_crossentropy)
chars_model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode="categorical")

# monitor定义为val_loss,输出相应的信息,只保存最好的val_loss(val_loss最小的那个),save_best_only
check_pointer = ModelCheckpoint(save_chars_model_path, monitor='val_loss', verbose=1, save_best_only=True)

# batch为128,epoch为4000个,validation_split=0.1
chars_model.fit(data_train, label_train, batch_size=128, nb_epoch=4000, verbose=1, show_accuracy=True, validation_split=0.1, callbacks=[check_pointer])

# 使用训练好的模型来评价test集合
score = chars_model.evaluate(data_test, label_test, show_accuracy=True, verbose=0)

注释已经写的很清楚了,想必结合keras应该可以很容易看懂,就不多说了,如果有问题欢迎提出!

mnist网络的图解

结合下经典的mnist网络,说下各层算完之后的大小

我们可以看到: 输入:32*32 conv1:6个5*5的filter,输出6*28*28 pool1:2*2,输出6*14*14 conv2:16个5*5的filter,输出16*6*10*10 pool2:2*2,输出16*6*5*5 fc1:输入16×5*5,输出120 fc2:输入120,输出84 output:输入84,输出10类

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏WD学习记录

21个项目玩转深度学习 学习笔记(1)

在Tensorflow中,无论是占位符还是变量,它们实际上都是Tensor,从Tensorflow的名字中,就可以看出Tensor在整个系统中处于核心地位。Te...

3042
来自专栏杂七杂八

numpy中的乘法(*,dot)

numpy中数据表示有数组和矩阵两种数据类型,他们的乘法计算也是多种形式,下面我们主要来说一下numpy中的乘法计算 numpy.ndarray 运算符 ...

2696
来自专栏小樱的经验随笔

51Nod 1091 线段的重叠(贪心+区间相关,板子题)

1091 线段的重叠 基准时间限制:1 秒 空间限制:131072 KB 分值: 5         难度:1级算法题 X轴上有N条线段,每条线段包括1个起点...

2534
来自专栏Petrichor的专栏

tf.nn.conv2d

934
来自专栏AIUAI

Caffe Loss层 - SoftmaxWithLossLayer

3959
来自专栏破晓之歌

Python实现线性回归 原

注:从笔记上copy一个网友的数据生成,列数不够,缺少y和x0部分,进行了修改,后面很多次试验用梯度下降方法求解thera都是NAN的结果,经过调试,发现可能是...

713
来自专栏CreateAMind

keras doc 4 使用陷阱与模型

771
来自专栏文武兼修ing——机器学习与IC设计

关于蘑菇数据集的探索分析数据集描述读取数据集直观分析——颜色鲜艳的蘑菇都有毒?相关性分析——判断各指标与毒性相关性模型训练——使用决策树模型

数据集描述 来源于kaggle的蘑菇数据集,包括毒性,大小,表面,颜色等,所有数据均为字符串类型,分析毒性与其他属性的关系 读取数据集 dataset = pd...

3726
来自专栏杂七杂八

numpy中random模块使用

在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,下面我们学习一下具体的使用,本文着重说明各个分布随机数的生成。 numpy.rand...

3685
来自专栏PaddlePaddle

【进阶篇】RNN配置

编写|PaddlePaddle 排版|wangp 本教程将指导你如何在 PaddlePaddle 中配置循环神经网络(RNN)。本教程中,您将了解如何: 配置循...

4148

扫码关注云+社区