CNN中各层图像大小的计算

CNN刚刚入门,一直不是很明白通过卷积或者pooling之后图像的大小是多少,看了几天之后终于搞清楚了,在这里就结合keras来说说各层图像大小是怎么计算的,给刚入门的一点启发吧!

keras中的convolution和pooling

keras我们以0.2的版本来介绍,0.1对的版本有不一样的地方。0.1的版本的border_mode可以有三种:valid,same,full,0.2版本中的只有两种少了full。

0.2版本的卷积需要指明input_shape但是不需要指明feature map的数量,0.1不需要指明input_shape但是需要指明feature map的数量。 下面具体说说几个重要参数的具体意思:

CONVOLUTION

keras.layers.convolutional.Convolution2D(nb_filter, nb_row, nb_col, init='glorot_uniform', activation='linear', weights=None, border_mode='valid', subsample=(1, 1), dim_ordering='th', W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None)

nb_filter:filter的个数 nb_row,nb_col:filter的大小(行和列) init:初始化方法 activation:激活函数 border_mode:valid 或者same,这个对下一层的运算产生影响 W_regulizer: WeightRegularizer,调整主权值矩阵的,通常使用L2 regulizer

POOLING 最常用的就是maxpooling,比如pool_size=(2, 2)就是说2*2=4个像素取值大的那个作为pooling之后的值,看下图:

keras.layers.convolutional.MaxPooling2D(pool_size=(2, 2), strides=None, border_mode='valid', dim_ordering='th')

pool_size:pooling的大小 stride:pooling的stride大小 border_mode: ‘valid’ or ‘same’ Note: ‘same’ will only work with TensorFlow for the time being dim_ordering: ‘th’ or ‘tf’. In ‘th’ mode, the channels dimension (the depth) is at index 1, in ‘tf’ mode is it at index 3

代码实例

weight_decay = 0.0001

# 使用sequentia模型
chars_model = Sequential()

# 第一层卷积,filter大小4*4,数量32个,原始图像大小36*20
chars_model.add(Convolution2D(32, 4, 4, input_shape=(1, 36, 20), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# 第二层卷积,filter大小4*4,数量32个,图像大小(36-4+1)*(20-4-1)
chars_model.add(Convolution2D(32, 4, 4, input_shape=(1, 33, 17), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# maxpooling,大小(2,2),输入大小是30*14,stride默认是None,输出大小是15*7
chars_model.add(MaxPooling2D(pool_size=(2, 2)))

# dropout防止过拟合
chars_model.add(Dropout(0.3))


# 第三层卷积,filter大小4*4,数量64个,图像大小15*7
chars_model.add(Convolution2D(64, 4, 4, input_shape=(1, 15, 7), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# 第四层卷积,filter大小4*4,数量64个,图像大小12*4,输出是10*2
chars_model.add(Convolution2D(64, 3, 3, input_shape=(1, 12, 4), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# maxpooling,大小(2,2),输入大小是12*4,stride默认是None,输出大小是5*1
chars_model.add(MaxPooling2D(pool_size=(2, 2)))

# dropout防止过拟合
chars_model.add(Dropout(0.3))


# flatten
chars_model.add(Flatten())

# 全连接,输入是上层的64个feature map,大小是5*1,输出有512个
chars_model.add(Dense(input_dim=64 * 5 * 1, output_dim=512, activation='relu'))
chars_model.add(Dropout(0.6))


# 全连接,输入是上层的输出512,softmax回归分类,总共26个类别
chars_model.add(Dense(input_dim=512, output_dim=26, activation='softmax'))

# 随机梯度下降的参数,使用momentum+decay
sgd = SGD(l2=0.0, lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True)

# 损失函数定义为对数损失(categorical_crossentropy)
chars_model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode="categorical")

# monitor定义为val_loss,输出相应的信息,只保存最好的val_loss(val_loss最小的那个),save_best_only
check_pointer = ModelCheckpoint(save_chars_model_path, monitor='val_loss', verbose=1, save_best_only=True)

# batch为128,epoch为4000个,validation_split=0.1
chars_model.fit(data_train, label_train, batch_size=128, nb_epoch=4000, verbose=1, show_accuracy=True, validation_split=0.1, callbacks=[check_pointer])

# 使用训练好的模型来评价test集合
score = chars_model.evaluate(data_test, label_test, show_accuracy=True, verbose=0)

注释已经写的很清楚了,想必结合keras应该可以很容易看懂,就不多说了,如果有问题欢迎提出!

mnist网络的图解

结合下经典的mnist网络,说下各层算完之后的大小

我们可以看到: 输入:32*32 conv1:6个5*5的filter,输出6*28*28 pool1:2*2,输出6*14*14 conv2:16个5*5的filter,输出16*6*10*10 pool2:2*2,输出16*6*5*5 fc1:输入16×5*5,输出120 fc2:输入120,输出84 output:输入84,输出10类

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

机器学习之随机森林

机器执行的每一个步都依赖于我们的指令。它们需要指导去哪里做什么,就像一个不了解周围环境而无法自己做决定的孩子。因此,开发人员会需要为机器编写指令。然而当我们谈论...

1878
来自专栏AI研习社

最经典的SVM算法在Spark上实现,这里有一份详尽的开发教程(含代码)

支持向量机 SVM(Support Vector Machine) 是一种有监督的学习模型,它的核心有两个:一、核函数 (kernel trick);二、序列最...

3605
来自专栏决胜机器学习

从机器学习学python(四) ——numpy矩阵广播及一些技巧

从机器学习学python(四)——numpy矩阵广播及一些技巧 (原创内容,转载请注明来源,谢谢) 在学ng的深度学习微专业时,其中有几节课讲到numpy的一...

3604
来自专栏张俊红

Sklearn参数详解--决策树

5818
来自专栏个人分享

C4.5决策树算法概念学习

•分类(Classification)就是按照某种标准给对象贴标签,再根据标签来区分归类,类别数不变。

592
来自专栏懒人开发

(4.2)James Stewart Calculus 5th Edition:The Mean Value Theorem

如果 f'(x) = g'(x), 则两个函数的差, 是一个常数 可以写成 f(x) = g(x) + c , c为常数

625
来自专栏机器学习算法与理论

核技巧

关于映射到更高维平面的方法。 对数据进行某种形式的转换,从而得到新的变量来表示数据。从一个特征空间转换到另一个特征空间(特征空间映射)。 其实也就是另外一种距离...

2646
来自专栏老秦求学

[Deep-Learning-with-Python]神经网络的数学基础

理解深度学习需要熟悉一些简单的数学概念:Tensors(张量)、Tensor operations 张量操作、differentiation微分、gradien...

655
来自专栏计算机视觉与深度学习基础

poj,zoj题目分类

ZOJ题目分类 初学者题: 1001 1037 1048 1049 1051 1067 1115 1151 1201 1205 1216 1240 1241...

1929
来自专栏海天一树

机器学习(一):k最近邻(kNN)算法

一、概述 kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算法,没有之一。 该算法的思路是:如果一个样本在特征空间中的k...

2565

扫码关注云+社区