一脸懵逼学习Hive(数据仓库基础构架)

Hive是什么?其体系结构简介* Hive的安装与管理* HiveQL数据类型,表以及表的操作* HiveQL查询数据*** Hive的Java客户端** Hive的自定义函数UDF*

1:什么是Hive(一):   (1)Hive 是建立在 Hadoop  上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL ),这是一种可以存储、查询和分析存储在 Hadoop  中的大规模数据的机制。Hive 定义了简单的类 SQL  查询语言,称为 QL ,它允许熟悉 SQL  的用户查询数据。同时,这个语言也允许熟悉 MapReduce  开发者的开发自定义的 mapper  和 reducer  来处理内建的 mapper 和 reducer  无法完成的复杂的分析工作。   (2)Hive是SQL解析引擎,它将SQL语句转译成M/R Job然后在Hadoop执行。     (3)Hive的表其实就是HDFS的目录/文件,按表名把文件夹分开。如果是分区表,则分区值是子文件夹,可以直接在M/R Job里使用这些数据。 2:Hive的系统架构:   (1)用户接口,包括 CLI,JDBC/ODBC,WebUI(用户接口主要有三个:CLI,JDBC/ODBC和 WebUI:);

CLI,即Shell命令行;     JDBC/ODBC 是 Hive 的Java,与使用传统数据库JDBC的方式类似;     WebGUI是通过浏览器访问 Hive;   (2)元数据存储,通常是存储在关系数据库如 mysql, derby 中;

Hive 将元数据存储在数据库中(metastore),目前只支持 mysql、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等;   (3)解释器、编译器、优化器、执行器;

解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划(plan)的生成。生成的查询计划存储在 HDFS 中,并在随后有 MapReduce 调用执行;   (4)Hadoop:用 HDFS 进行存储,利用 MapReduce 进行计算;       Hive 的数据存储在 HDFS 中,大部分的查询由 MapReduce 完成(包含 * 的查询,比如 select * from table 不会生成 MapRedcue 任务) 3:Hive的安装:   (1)把hive-0.9.0.tar.gz复制到/usr/local   (2)解压hive-0.9.0.tar.gz与重命名      #cd /usr/local      #tar -zxvf hive-0.9.0.tar.gz        #mv hive-0.9.0 hive   (3)修改/etc/profile文件。     #vi /etc/profile     增加     export HIVE_HOME=/usr/local/hive     修改     export PATH=$JAVA_HOME/bin:$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin     保存退出     #source /etc/profile   (4)cd  $HIVE_HOME       mv  hive-env.sh.template  hive-env.sh       mv  hive-default.xml.template  hive-site.xml      修改hadoop的hadoop-env.sh(否则启动hive汇报找不到类的错误)          export HADOOP_CLASSPATH=.:$CLASSPATH:$HADOOP_CLASSPATH:             $HADOOP_HOME/bin      修改$HIVE_HOME/bin的hive-config.sh,增加以下三行       export JAVA_HOME=/usr/local/jdk       export HIVE_HOME=/usr/local/hive       export HADOOP_HOME=/usr/local/hadoop   (5)启动     #hive     hive>show tables;     hive>create table test(id int,name string);     hive>quit;

    观察:#hadoop fs -ls /user/hive     参数:hive.metastore.warehouse.dir 4:Hive的metastore:

  (1)metastore是hive元数据的集中存放地。metastore默认使用内嵌的derby数据库作为存储引擎;   (2)Derby引擎的缺点:一次只能打开一个会话;   (3)使用Mysql作为外置存储引擎,多用户同时访问; 5:Hive的安装:   配置MySQL的metastore   (1)上传mysql-connector-java-5.1.10.jar到$HIVE_HOME/lib   (2)登录MYSQL,创建数据库hive     #mysql -uroot -padmin     mysql>create database hive;     mysql>GRANT all ON hive.* TO root@'%' IDENTIFIED BY 'admin';     mysql>flush privileges;     mysql>set global binlog_format='MIXED';   (3)把mysql的数据库字符类型改为latin1 (4)修改$HIVE_HOME/conf/hive-site.xml

<property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://hadoop0:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
</property>
<property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>root</value>
</property>
<property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>admin</value>
</property>

6:Hive运行模式 :   (1)Hive的运行模式即任务的执行环境   (2)分为本地与集群两种     我们可以通过mapred.job.tracker 来指明     设置方式:     hive > SET mapred.job.tracker=local 7:Hive的启动方式:   (1)、hive 命令行模式,直接输入#/hive/bin/hive的执行程序,或者输入 #hive --service cli   (2)、 hive web界面的 (端口号9999) 启动方式     #hive --service hwi &     用于通过浏览器来访问hive     http://hadoop0:9999/hwi/   (3)、 hive 远程服务 (端口号10000) 启动方式     #hive --service hiveserver & 8:Hive与传统数据库:

9:Hive的数据类型:   (1)基本数据类型:     tinyint/smallint/int/bigint     float/double     boolean     string   (2)复杂数据类型:     Array/Map/Struct   (3)没有date/datetime 10:Hive的数据存储:   (1)Hive的数据存储基于Hadoop HDFS;   (2)Hive没有专门的数据存储格式;   (3)存储结构主要包括:数据库、文件、表、视图;   (4)Hive默认可以直接加载文本文件(TextFile),还支持sequence file 、RC file;   (5)创建表时,指定Hive数据的列分隔符与行分隔符,Hive即可解析数据; 11:Hive的数据模型-数据库:   (1)类似传统数据库的DataBase   (2)默认数据库"default"     使用#hive命令后,不使用hive>use <数据库名>,系统默认的数据库。可以显式使用hive> use default;     创建一个新库     hive > create database test_dw; 12:Hive的数据模型-表:   Table 内部表   Partition  分区表   External Table 外部表   Bucket  Table 桶表 13:Hive的数据模型-内部表: (1)与数据库中的 Table 在概念上是类似   (2)每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 test,它在 HDFS 中的路径为:/ warehouse/test。 warehouse是在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录   (3)所有的 Table 数据(不包括 External Table)都保存在这个目录中。   (4)删除表时,元数据与数据都会被删除   (5)创建数据文件inner_table.dat   (6)创建表:     hive>create table inner_table (key string);   (7)加载数据:     hive>load data local inpath '/root/inner_table.dat' into table inner_table;   (8)查看数据:     select * from inner_table     select count(*) from inner_table   (9)删除表 drop table inner_table 14:Hive的数据模型-分区表:   (1)Partition 对应于数据库的 Partition 列的密集索引   (2)在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在对应的目录中     例如:test表中包含 date 和 city 两个 Partition,       则对应于date=20130201, city = bj 的 HDFS 子目录为:       /warehouse/test/date=20130201/city=bj       对应于date=20130202, city=sh 的HDFS 子目录为;       /warehouse/test/date=20130202/city=sh

一些相关命令
SHOW TABLES; # 查看所有的表
SHOW TABLES '*TMP*'; #支持模糊查询
SHOW PARTITIONS TMP_TABLE; #查看表有哪些分区
DESCRIBE TMP_TABLE; #查看表结构

(3)创建数据文件partition_table.dat   (4)创建表     create table partition_table(rectime string,msisdn string) partitioned by(daytime string,city string) row format delimited fields terminated by '\t' stored as     TEXTFILE;   (5)加载数据到分区     load data local inpath '/home/partition_table.dat' into table partition_table partition (daytime='2013-02-01',city='bj');   (6)查看数据     select * from partition_table     select count(*) from partition_table   (7)删除表 drop table partition_table   (8)alter table partition_table add partition (daytime='2013-02-04',city='bj');     通过load data 加载数据   (9)alter table partition_table drop partition (daytime='2013-02-04',city='bj')     元数据,数据文件删除,但目录daytime=2013-02-04还在 15:Hive的数据模型—桶表:   (1)桶表是对数据进行哈希取值,然后放到不同文件中存储。   (2)创建表         create table bucket_table(id string) clustered by(id) into 4 buckets;           (3)加载数据         set hive.enforce.bucketing = true;         insert into table bucket_table select name from stu;             insert overwrite table bucket_table select name from stu;   (4)数据加载到桶表时,会对字段取hash值,然后与桶的数量取模。把数据放到对应的文件中。   (5)抽样查询         select * from bucket_table tablesample(bucket 1 out of 4 on id); 16:Hive的数据模型-外部表:   (1)指向已经在 HDFS 中存在的数据,可以创建 Partition;   (2)它和 内部表 在元数据的组织上是相同的,而实际数据的存储则有较大的差异;   (3)内部表 的创建过程和数据加载过程(这两个过程可以在同一个语句中完成),在加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据对访问将会直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除;   (4)外部表 只有一个过程,加载数据和创建表同时完成,并不会移动到数据仓库目录中,只是与外部数据建立一个链接。当删除一个 外部表 时,仅删除该链接;

CREATE EXTERNAL TABLE page_view
( viewTime INT, 
  userid BIGINT,
  page_url STRING,     
 referrer_url STRING,                             
  ip STRING COMMENT 'IP Address of the User',
  country STRING COMMENT 'country of origination‘
)
    COMMENT 'This is the staging page view table'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '44' LINES     TERMINATED BY '12'
    STORED AS TEXTFILE
    LOCATION 'hdfs://centos:9000/user/data/staging/page_view';

  (5)创建数据文件external_table.dat   (6)创建表     hive>create external table external_table1 (key string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' location '/home/external';   (7)在HDFS创建目录/home/external     #hadoop fs -put /home/external_table.dat /home/external   (8)加载数据     LOAD DATA INPATH '/home/external_table1.dat' INTO TABLE external_table1;   (9)查看数据     select * from external_table     select count(*) from external_table   (10)删除表     drop table external_table 17:视图操作:   视图的创建   CREATE VIEW v1 AS select * from t1; 18:表的操作:   (1)表的修改     alter table target_tab add columns (cols,string)   (2)表的删除     drop table 19:为什么选择Hive?   (1)基于Hadoop的大数据的计算/扩展能力;   (2)支持SQL like查询语言;   (3)统一的元数据管理;   (4)简单编程; 20:导入数据   (1)当数据被加载至表中时,不会对数据进行任何转换。Load 操作只是将数据复制/移动至 Hive 表对应的位置。     LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE]     INTO TABLE tablename     [PARTITION (partcol1=val1, partcol2=val2 ...)]   (2)把一个Hive表导入到另一个已建Hive表     INSERT OVERWRITE TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement FROM from_statement     CTAS     CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name         (col_name data_type, ...)    …         AS SELECT …     例:create table new_external_test as  select * from external_table1; 21:查询

select
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
    FROM table_reference
    [WHERE where_condition]
    [GROUP BY col_list]
    [ CLUSTER BY col_list | [DISTRIBUTE BY col_list] [SORT BY col_list] | [ORDER BY col_list] ]
    [LIMIT number]

  (1)基于Partition的查询       一般 SELECT 查询是全表扫描。但如果是分区表,查询就可以利用分区剪枝(input pruning)的特性,类似“分区索引“”,只扫描一个表中它关心的那一部分。Hive 当前的实现是,只有分区断言(Partitioned by)出现在离 FROM 子句最近的那个WHERE 子句中,才会启用分区剪枝。例如,如果 page_views 表(按天分区)使用 date 列分区,以下语句只会读取分区为‘2008-03-01’的数据。  SELECT page_views.*    FROM page_views    WHERE page_views.date >= '2013-03-01' AND page_views.date <= '2013-03-01'   (2)LIMIT Clause     Limit 可以限制查询的记录数。查询的结果是随机选择的。下面的查询语句从 t1 表中随机查询5条记录:     SELECT * FROM t1 LIMIT 5   (3)Top N查询     下面的查询语句查询销售记录最大的 5 个销售代表。     SET mapred.reduce.tasks = 1   SELECT * FROM sales SORT BY amount DESC LIMIT 5 22:表连接   (1)导入ac信息表     hive> create table acinfo (name string,acip string)  row format delimited fields terminated by '\t' stored as TEXTFILE;     hive> load data local inpath '/home/acinfo/ac.dat' into table acinfo;   (2)内连接     select b.name,a.* from dim_ac a join acinfo b on (a.ac=b.acip) limit 10;   (3)左外连接     select b.name,a.* from dim_ac a left outer join acinfo b on a.ac=b.acip limit 10; 23:Java客户端   (1)Hive远程服务启动#hive --service hiveserver >/dev/null  2>/dev/null &   (2)JAVA客户端相关代码

Class.forName("org.apache.hadoop.hive.jdbc.HiveDriver");
Connection con = DriverManager.getConnection("jdbc:hive://192.168.1.102:10000/wlan_dw", "", "");
Statement stmt = con.createStatement();
String querySQL="SELECT * FROM wlan_dw.dim_m order by flux desc limit 10";

ResultSet res = stmt.executeQuery(querySQL);  

while (res.next()) {
System.out.println(res.getString(1) +"\t" +res.getLong(2)+"\t" +res.getLong(3)+"\t" +res.getLong(4)+"\t" +res.getLong(5));
}

24:UDF   1、UDF函数可以直接应用于select语句,对查询结构做格式化处理后,再输出内容。   2、编写UDF函数的时候需要注意一下几点:     a)自定义UDF需要继承org.apache.hadoop.hive.ql.UDF。     b)需要实现evaluate函数,evaluate函数支持重载。   3、步骤     a)把程序打包放到目标机器上去;     b)进入hive客户端,添加jar包:hive>add jar /run/jar/udf_test.jar;     c)创建临时函数:hive>CREATE TEMPORARY FUNCTION add_example AS 'hive.udf.Add';     d)查询HQL语句:       SELECT add_example(8, 9) FROM scores;       SELECT add_example(scores.math, scores.art) FROM scores;       SELECT add_example(6, 7, 8, 6.8) FROM scores;     e)销毁临时函数:hive> DROP TEMPORARY FUNCTION add_example;     注:UDF只能实现一进一出的操作,如果需要实现多进一出,则需要实现UDAF

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏杨建荣的学习笔记

归档和非归档模式下ORA-01145错误的解决方法(87天)

总结了一下,在归档和非归档的场景下,ora-01145这个错误可能有如下三种情况: 1.off line tablespace --在非归档模式下尝试ofli...

2996
来自专栏Java Edge

2018-05-20

1384
来自专栏Hadoop数据仓库

HAWQ技术解析(八) —— 大表分区

一、HAWQ中的分区表         与大多数关系数据库一样,HAWQ也支持分区表。这里所说的分区表是指HAWQ的内部分区表,外部分区表在后面“外部数据”篇讨...

2137
来自专栏星汉技术

HIVE中的表以及语法

4244
来自专栏Spark学习技巧

实战phoenix

一 安装部署 1, 下载 http://archive.apache.org/dist/phoenix/ 本文下载的是apache-phoenix-4.12....

25710
来自专栏大数据和云计算技术

Hive 元数据表结构详解

元数据是基础,这篇文章值得一读。 本文介绍Hive元数据库中一些重要的表结构及用途,方便Impala、SparkSQL、Hive等组件访问元数据库的理解。 1、...

3975
来自专栏杨建荣的学习笔记

关于奇怪的并行进程分析(三)(r6笔记第47天)

在前两篇的基础上,对于一个环境中存在的奇怪并行进程问题进行了初步的分析。 初步排除了是通过scheduler的job运行导致的,一方面因为运行的时间会有延迟,甚...

2704
来自专栏别先生

java 使用jdbc连接Greenplum数据库和Postgresql数据库

1、公司使用的Greenplum和Postgresql,确实让我学到不少东西。简单将使用jdbc连接Greenplum和Postgresql数据库。由于使用ma...

441
来自专栏积累沉淀

25分钟掌握Hive基本操作

15分钟掌握Hive基本操作 (1)、从本地文件系统中导入数据到Hive表; (2)、从HDFS上导入数据到Hive表; (3)、从别的表中查询出相应的数据并导...

1747
来自专栏搜云库

Mycat 读写分离 数据库分库分表 中间件 安装部署,及简单使用

MyCat是一个开源的分布式数据库系统,是一个实现了MySQL协议的服务器,前端用户可以把它看作是一个数据库代理,用MySQL客户端工具和命令行访问,而其后端可...

29010

扫码关注云+社区