使用Faster-Rcnn进行目标检测(实践篇)

原理

上一篇文章,已经说过了,大家可以参考一下,Faster-Rcnn进行目标检测(原理篇)

实验

我使用的代码是python版本的Faster Rcnn,官方也有Matlab版本的,链接如下:

py-faster-rcnn(python)

faster-rcnn(matlab)

环境配置

按照官方的README进行配置就好,不过在这之前大家还是看下硬件要求吧

For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, …) with at least 3G of memory suffices

For training Fast R-CNN with VGG16, you’ll need a K40 (~11G of memory)

For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)

我的是环境是Ubuntu 14.04 + Titan X(12GB) + cuda 7.0 + cudnn V3

1 Caffe环境配置

Caffe环境需要python layer的支持,在你的Caffe的Makefile.config中去掉以下的注释

WITH_PYTHON_LAYER := 1

USE_CUDNN := 1

2 安装python库依赖

cython,python-opencveasydict

pip install cython
pip install python-opencv
pip install easydict

3 克隆py-faster-rcnn源代码

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

4 编译cython模块

cd $FRCN_ROOT/lib
make 

5 编译Caffepycaffe

cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe

-j8的选项是进行多核编译,可以加速编译过程,推荐使用

数据集

参考VOC2007的数据集格式,主要包括三个部分:

JPEGImages

Annotations

ImageSets/Main

JPEGImages —> 存放你用来训练的原始图像

Annotations —> 存放原始图像中的Object的坐标信息,XML格式

ImageSets/Main —> 指定用来train,trainval,val和test的图片的编号

这部分非常重要,数据集做不好直接导致代码出现异常,无法运行,或者出现奇怪的错误,我也是掉进了很多坑,爬上来之后才写的这篇博客,希望大家不要趟我趟过的浑水!每一个部分我都会细说的!

JPEGImages

这个没什么,直接把你的图片放入就可以了,但是有三点注意:

编号要以6为数字命名,例如000034.jpg

图片要是JPEG/JPG格式的,PNG之类的需要自己转换下

图片的长宽比(width/height)要在0.462-6.828之间,就是太过瘦长的图片不要

0.462-6.828是我自己实验得出来的,就我的数据集而言是这个比例,总之长宽比太大或者太小的,你要注意将其剔除,否则可能会出现下面我实验时候出的错:

Traceback (most recent call last): File “/usr/lib/python2.7/multiprocessing/process.py”, line 258, in _bootstrap self.run() File “/usr/lib/python2.7/multiprocessing/process.py”, line 114, in run self._target(*self._args, **self._kwargs) File “./tools/train_faster_rcnn_alt_opt.py”, line 130, in train_rpn max_iters=max_iters) File “/home/work-station/zx/py-faster-rcnn/tools/../lib/fast_rcnn/train.py”, line 160, in train_net model_paths = sw.train_model(max_iters) File “/home/work-station/zx/py-faster-rcnn/tools/../lib/fast_rcnn/train.py”, line 101, in train_model self.solver.step(1) File “/home/work-station/zx/py-faster-rcnn/tools/../lib/rpn/anchor_target_layer.py”, line 137, in forward gt_argmax_overlaps = overlaps.argmax(axis=0) ValueError: attempt to get argmax of an empty sequence

Google给出的原因是 Because the ratio of images width and heights is too small or large,这个非常重要

Annotations

faster rcnn训练需要图像的bounding box信息作为监督(ground truth),所以你需要将你的所有可能的object使用框标注,并写上坐标,最终是一个XML格式的文件,一个训练图片对应Annotations下的一个同名的XML文件

参考官方VOC的Annotations的格式:

<annotation>
    <folder>VOC2007</folder> #数据集文件夹
    <filename>000105.jpg</filename> #图片的name
    <source> #注释信息,无所谓有无
        <database>The VOC2007 Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
        <flickrid>321862192</flickrid>
    </source>
    <owner> #注释信息,无所谓有无
        <flickrid>Eric T. Johnson</flickrid>
        <name>?</name>
    </owner>
    <size> #图片大小
        <width>500</width>
        <height>333</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object> #多少个框就有多少个object标签
        <name>boat</name> #bounding box中的object的class name
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>22</xmin> #框的坐标
            <ymin>1</ymin>
            <xmax>320</xmax>
            <ymax>314</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>202</xmin>
            <ymin>71</ymin>
            <xmax>295</xmax>
            <ymax>215</ymax>
        </bndbox>
    </object>
    <object>
        <name>person</name>
        <pose>Frontal</pose>
        <truncated>1</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>170</xmin>
            <ymin>107</ymin>
            <xmax>239</xmax>
            <ymax>206</ymax>
        </bndbox>
    </object>
</annotation>

这里有一个非常好用的工具VOC框图工具,可以自动帮你生成需要的XML格式,实际中发现格式基本无误,只有小的地方需要改动下,大家对比下就知道怎么改了,我是在linux下借助sed修改的,这个不难

Imagesets/Main

因为VOC的数据集可以做很多的CV任务,比如Object detection, Semantic segementation, Edge detection等,所以Imageset下有几个子文件夹(Layout, Main, Segementation),我们只要修改下Main下的文件就可以了(train.txt, trainval.txt, val.txt, test.txt),里面写上你想要进行任务的图片的编号

将上述你的数据集放在py-faster-rcnn/data/VOCdevkit2007/VOC2007下面,替换原始VOC2007的JPEGIMages,Imagesets,Annotations

原始VOC2007下载地址: VOC20007数据集

代码修改

工程目录介绍

caffe-fast-rcnn —> caffe框架

data —> 存放数据,以及读取文件的cache

experiments —>存放配置文件以及运行的log文件,配置文件

lib —> python接口

models —> 三种模型, ZF(S)/VGG1024(M)/VGG16(L)

output —> 输出的model存放的位置,不训练此文件夹没有

tools —> 训练和测试的python文件

修改源文件

faster rcnn有两种各种训练方式:

Alternative training(alt-opt)

Approximate joint training(end-to-end)

推荐使用第二种,因为第二种使用的显存更小,而且训练会更快,同时准确率差不多,两种方式需要修改的代码是不一样的,同时faster rcnn提供了三种训练模型,小型的ZFmodel,中型的VGG_CNN_M_1024和大型的VGG16,论文中说VGG16效果比其他两个好,但是同时占用更大的GPU显存(~11GB)

我使用的是VGG model + alternative training,需要检测的类别只有一类,加上背景所以总共是两类(background + captcha)

1 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_fast_rcnn_train.pt

layer {  
  name: 'data'  
  type: 'Python'  
  top: 'data'  
  top: 'rois'  
  top: 'labels'  
  top: 'bbox_targets'  
  top: 'bbox_inside_weights'  
  top: 'bbox_outside_weights'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  
layer {  
  name: "cls_score"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "cls_score"  
  param { 
  lr_mult: 1.0
  }  
  param {
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 2 #按训练集类别改,该值为类别数+1  
    weight_filler {  
      type: "gaussian"  
      std: 0.01  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  
layer {  
  name: "bbox_pred"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "bbox_pred"  
  param { 
  lr_mult: 1.0 
  }  
  param { 
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 8 #按训练集类别改,该值为(类别数+1)*4,四个顶点坐标  
    weight_filler {  
      type: "gaussian"  
      std: 0.001  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  

2 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage1_rpn_train.pt

layer {  
  name: 'input-data'  
  type: 'Python'  
  top: 'data'  
  top: 'im_info'  
  top: 'gt_boxes'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  

3 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_fast_rcnn_train.pt

layer {  
  name: 'data'  
  type: 'Python'  
  top: 'data'  
  top: 'rois'  
  top: 'labels'  
  top: 'bbox_targets'  
  top: 'bbox_inside_weights'  
  top: 'bbox_outside_weights'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  
layer {  
  name: "cls_score"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "cls_score"  
  param { 
  lr_mult: 1.0 
  }  
  param { 
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 2 #按训练集类别改,该值为类别数+1  
    weight_filler {  
      type: "gaussian"  
      std: 0.01  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  
layer {  
  name: "bbox_pred"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "bbox_pred"  
  param { 
  lr_mult: 1.0
  }  
  param { 
  lr_mult: 2.0 
  }  
  inner_product_param {  
    num_output: 8 #按训练集类别改,该值为(类别数+1)*4,四个顶点坐标  
    weight_filler {  
      type: "gaussian"  
      std: 0.001  
    }  
    bias_filler {  
      type: "constant"  
      value: 0  
    }  
  }  
}  

4 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage2_rpn_train.pt

layer {  
  name: 'input-data'  
  type: 'Python'  
  top: 'data'  
  top: 'im_info'  
  top: 'gt_boxes'  
  python_param {  
    module: 'roi_data_layer.layer'  
    layer: 'RoIDataLayer'  
    param_str: "'num_classes': 2" #按训练集类别改,该值为类别数+1  
  }  
}  

5 py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt

layer {  
  name: "cls_score"  
  type: "InnerProduct"  
  bottom: "fc7"  
  top: "cls_score"  
  inner_product_param {  
    num_output: 2 #按训练集类别改,该值为类别数+1  
  }  
}  

6 py-faster-rcnn/lib/datasets/pascal_voc.py

class pascal_voc(imdb):  
    def __init__(self, image_set, year, devkit_path=None):  
        imdb.__init__(self, 'voc_' + year + '_' + image_set)  
        self._year = year  
        self._image_set = image_set  
        self._devkit_path = self._get_default_path() if devkit_path is None \  
                            else devkit_path  
        self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)  
        self._classes = ('__background__', # always index 0  
                         captcha' # 有几个类别此处就写几个,我是两个
                      )  

line 212

cls = self._class_to_ind[obj.find('name').text.lower().strip()]  

如果你的标签含有大写字母,可能会出现KeyError的错误,所以建议全部使用小写字母

7 py-faster-rcnn/lib/datasets/imdb.py

将append_flipped_images函数改为如下形式:

def append_flipped_images(self):  
        num_images = self.num_images  
        widths = [PIL.Image.open(self.image_path_at(i)).size[0]  
                  for i in xrange(num_images)]  
        for i in xrange(num_images):  
            boxes = self.roidb[i]['boxes'].copy()  
            oldx1 = boxes[:, 0].copy()  
            oldx2 = boxes[:, 2].copy()  
            boxes[:, 0] = widths[i] - oldx2 - 1  
            print boxes[:, 0]  
            boxes[:, 2] = widths[i] - oldx1 - 1  
            print boxes[:, 0]  
            assert (boxes[:, 2] >= boxes[:, 0]).all()  
            entry = {'boxes' : boxes,  
                     'gt_overlaps' : self.roidb[i]['gt_overlaps'],  
                     'gt_classes' : self.roidb[i]['gt_classes'],  
                     'flipped' : True}  
            self.roidb.append(entry)  
        self._image_index = self._image_index * 2  

到此代码修改就搞定了

训练

训练前还需要注意几个地方

1 cache问题

假如你之前训练了官方的VOC2007的数据集或其他的数据集,是会产生cache的问题的,建议在重新训练新的数据之前将其删除

(1) py-faster-rcnn/output (2) py-faster-rcnn/data/cache

2 训练参数

py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_alt_opt/stage_fast_rcnn_solver*.pt

base_lr: 0.001
lr_policy: 'step'
step_size: 30000
display: 20
....

迭代次数在文件py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py中进行修改

line 80

max_iters = [80000, 40000, 80000, 40000]

分别对应rpn第1阶段,fast rcnn第1阶段,rpn第2阶段,fast rcnn第2阶段的迭代次数,自己修改即可,不过注意这里的值不要小于上面的solver里面的step_size的大小,大家自己修改吧

开始训练:

cd py-faster-rcnn
./experiments/scripts/faster_rcnn_alt_opt.sh 0 VGG16 pascal_voc 

指明使用第一块GPU(0),模型是VGG16,训练数据是pascal_voc(voc2007),没问题的话应该可以迭代训练了

结果

训练完毕,得到我们的训练模型,我们就可以使用它来进行我们的object detection了,具体是: 1 将py-faster-rcnn/output/faster_rcnn_alt_opt/voc_2007_trainval/VGG16_faster_rcnn_final.caffemodel,拷贝到py-faster-rcnn/data/faster_rcnn_models

2 将你需要进行test的images放在py-faster-rcnn/data/demo

3 修改py-faster-rcnn/tools/demo.py文件

CLASSES = ('_background_', 'captcha') #参考你自己的类别写

NETS = {'vgg16': ('VGG16', 'VGG16_faster_rcnn_final.caffemodel'), #改成你训练得到的model的name 'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel') }

im_names = ['1559.jpg','1564.jpg']  # 改成自己的test image的name

上几张我的检测结果吧

参考

1 faster rcnn 做自己的数据集

2 faster rcnn 教程

3 使用ZF训练自己的faster rcnn model

4 一些错误的解决方法

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏梦里茶室

TensorFlow 深度学习笔记 逻辑回归 实践篇

Practical Aspects of Learning Install Ipython NoteBook 可以参考这个教程 可以直接安装anaconda,里...

1857
来自专栏用户2442861的专栏

caffe python 图片训练识别 实例

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details...

1752
来自专栏素质云笔记

SSD+caffe︱Single Shot MultiBox Detector 目标检测+fine-tuning(二)

承接上一篇SSD介绍:SSD+caffe︱Single Shot MultiBox Detector 目标检测(一) 如果自己要训练SSD模型呢,关键...

76310
来自专栏MixLab科技+设计实验室

自己动手做一个识别手写数字的web应用01

最近在深入地学习keras,发现网上各种教程都是教你怎么训练模型的,很少有问题提到如何把训练好的模型部署为后端服务,为web及app提供服务。 于是,我决定把学...

3788
来自专栏Gaussic

OpenBr快速入门 原

这篇教程旨在使用一些有趣的例子让你熟悉OpenBR背后的思想、对象以及动机。注意需要摄像头的支持。

911
来自专栏计算机视觉战队

实战——目标检测与识别

最近总是有很多入门的朋友问我,我进入计算机视觉这个领域难不难?是不是要学习很多知识?到底哪个方向比较好?。。。。。这些问题其实我也不好回答他们,只能衷心告诉他...

2775
来自专栏机器学习算法全栈工程师

应用TF-Slim快速实现迁移学习

作者:张旭 编辑:张欢 这是一篇以实践为主的入门文章,目的在于用尽量少的成本组织起来一套可以训练和测试自己的分类任务的代码,其中就会用到迁移学习,TF-Sli...

4756
来自专栏人人都是极客

4.训练模型之准备训练数据

终于要开始训练识别熊猫的模型了, 第一步是准备好训练数据,这里有三件事情要做: 收集一定数量的熊猫图片。 将图片中的熊猫用矩形框标注出来。 将原始图片和标注文件...

3908
来自专栏慎独

Python科学计算和绘图入门

2694
来自专栏BestSDK

MXNet Scala发布图像分类API|附使用教程

这次发布的 Scala,里面的推理应用程序致力于优化开发者体验。Scala 是一个通用目的程序语言,支持功能性编程和较强的静态类型系统,它被用于平台的高度分布式...

1167

扫码关注云+社区