# KNN in sklearn

sklearn是这么说KNN的：

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can, in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based methods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data (possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

## 接口介绍

`sklearn.neighbors`

• KNeighborsClassifier（RadiusNeighborsClassifier)
• kNeighborsRegressor (RadiusNeighborsRefressor)

## classifier

### 接口定义

KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)

1. weights（各个neighbor的权重分配）
2. metric（距离的度量）

### 例子

```import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

# 导入iris数据集
iris = datasets.load_iris()
# iris特征有四个，这里只使用前两个特征来做分类
X = iris.data[:, :2]
# iris的label
y = iris.target

h = .02  # step size in the mesh

# colormap
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for weights in ['uniform', 'distance']:
# KNN分类器
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
# fit
clf.fit(X, y)

# Plot the decision boundary.
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# predict
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights))

plt.show()```

1. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
2. clf.fit(X, y)
3. clf.predict(Z)

## regressor

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables. The label assigned to a query point is computed based the mean of the labels of its nearest neighbors. 例子

```import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

n_neighbors = 5

for i, weights in enumerate(['uniform', 'distance']):
knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
y_ = knn.fit(X, y).predict(T)

plt.subplot(2, 1, i + 1)
plt.scatter(X, y, c='k', label='data')
plt.plot(T, y_, c='g', label='prediction')
plt.axis('tight')
plt.legend()
plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)

plt.show()```

89 篇文章41 人订阅

0 条评论

## 相关文章

2286

### 命名实体识别的两种方法

【磐创AI导读】：本文主要介绍自然语言处理中的经典问题——命名实体识别的两种方法。想要学习更多的机器学习知识，欢迎大家点击上方蓝字关注我们的公众号：磐创AI。

932

684

35910

### 【编程课堂】jieba-中文分词利器

0、前言 在之前的文章【编程课堂】词云 wordcloud 中，我们曾使用过 jieba 库，当时并没有深入讲解，所以本次将其单独列出来详细讲解。 jieba库...

34811

52011

581

1053

### GO语言利用K近邻算法实现小说鉴黄

Usuage: go run kNN.go --file="data.txt" 关键是向量点的选择和阈值的判定 样本数据来自国家新闻出版总署发布通知公布的《...

2655

1062