sklearn中的nearest neighbor

KNN介绍

基础原理没什么介绍的,可以参考我的KNN原理和实现,里面介绍了KNN的原理同时使用KNN来进行mnist分类

KNN in sklearn

sklearn是这么说KNN的:

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can, in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based methods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data (possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

接口介绍

sklearn.neighbors

主要有两个:

  • KNeighborsClassifier(RadiusNeighborsClassifier)
  • kNeighborsRegressor (RadiusNeighborsRefressor)

其它的还有一些,不多说,上图:

classifier

接口定义

KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)

参数介绍

需要注意的点就是:

  1. weights(各个neighbor的权重分配)
  2. metric(距离的度量)

例子

这次就不写mnist分类了,其实也很简单,官网的教程就可以说明问题了

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

# 导入iris数据集
iris = datasets.load_iris()  
# iris特征有四个,这里只使用前两个特征来做分类
X = iris.data[:, :2] 
# iris的label 
y = iris.target  

h = .02  # step size in the mesh

# colormap
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for weights in ['uniform', 'distance']:
    # KNN分类器
    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    # fit
    clf.fit(X, y)

    # Plot the decision boundary.     
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    # predict
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))

plt.show()

其实非常简单,如果去除画图的代码其实就三行:

  1. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
  2. clf.fit(X, y)
  3. clf.predict(Z)

如果你的数据不是uniformaly sampled的,你会需要用到RadiusNeighrborsClassifier,使用方法保持一致

regressor

大部分说KNN其实是说的是分类器,其实KNN还可以做回归,官网教程是这么说的:

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables. The label assigned to a query point is computed based the mean of the labels of its nearest neighbors. 例子

同样是官网的例子

import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

n_neighbors = 5

for i, weights in enumerate(['uniform', 'distance']):
    knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
    y_ = knn.fit(X, y).predict(T)

    plt.subplot(2, 1, i + 1)
    plt.scatter(X, y, c='k', label='data')
    plt.plot(T, y_, c='g', label='prediction')
    plt.axis('tight')
    plt.legend()
    plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)  

    plt.show()

简单易懂,就不解释了

与classifier一样,如果你的数据不是uniformly sampled的,使用RadiusNeighborsRegressor更加合适

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

使用OpenCV,Python和模板匹配来播放“Waldo在哪里?”

这是一篇来自PyImageSearch的Adrian Rosebrock的博客,他的博客内容包括计算机视觉,图像处理和建筑图像搜索引擎等。

2286
来自专栏磐创AI技术团队的专栏

命名实体识别的两种方法

【磐创AI导读】:本文主要介绍自然语言处理中的经典问题——命名实体识别的两种方法。想要学习更多的机器学习知识,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。

932
来自专栏数据结构与算法

9.21模拟赛解题报告

上来看T1,咦?我好像做过这题在仙人掌上的版本。。树上更简单吧。。写+拍 1h,期间拍出了暴力的两个bug。。。

684
来自专栏深度学习自然语言处理

详解依存树的来龙去脉及用法

这开始介绍依存树的来龙去脉! 来历 a.简单的短语分词(正向逆向最大匹配,n-gram,机器学习...)(以单个词为重点) 比如: 猴子喜欢吃香蕉。->猴子 喜...

35910
来自专栏Crossin的编程教室

【编程课堂】jieba-中文分词利器

0、前言 在之前的文章【编程课堂】词云 wordcloud 中,我们曾使用过 jieba 库,当时并没有深入讲解,所以本次将其单独列出来详细讲解。 jieba库...

34811
来自专栏AIUAI

Caffe2 - (二十四) Detectron 之 utils 函数(2)

52011
来自专栏机器学习人工学weekly

机器学习人工学weekly-2018/7/22

链接:https://cn.udacity.com/course/self-driving-car-fundamentals-featuring-apollo-...

581
来自专栏程序生活

斯坦福tensorflow教程-实例代码简单代码关于占位符 placeholder与feed_dictvariable 变量

1053
来自专栏Golang语言社区

GO语言利用K近邻算法实现小说鉴黄

Usuage: go run kNN.go --file="data.txt" 关键是向量点的选择和阈值的判定 样本数据来自国家新闻出版总署发布通知公布的《...

2655
来自专栏机器学习和数学

自然语言处理 | 使用Spacy 进行自然语言处理(二)

上次我们简单介绍了Spacy,学习了它的安装以及实体识别等基本的方法。今天我继续给大家介绍一下它的其他功能如何操作,主要有词性还原,词性标注,名词块识别,依存分...

1062

扫码关注云+社区