LSH︱python实现MinHash-LSH及MinHash LSH Forest——datasketch(四)

关于局部敏感哈希算法,之前用R语言实现过,但是由于在R中效能太低,于是放弃用LSH来做相似性检索。学了Python发现很多模块都能实现,而且通过随机投影森林让查询数据更快,觉得可以试试大规模应用在数据相似性检索+去重的场景。

私认为,文本的相似性可以分为两类:一类是机械相似性;一类是语义相似性。 机械相似性代表着,两个文本内容上的相关程度,比如“你好吗”和“你好”的相似性,纯粹代表着内容上字符是否完全共现,应用场景在:文章去重; 语义相似性代表着,两个文本语义上的相似程度,比如“苹果”和“公司”的相似性,本篇不做这一讨论

之前写关于R语言实现的博客: R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(一,基本原理) R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(二,textreuse介绍) . 机械相似性python版的四部曲: LSH︱python实现局部敏感随机投影森林——LSHForest/sklearn(一) LSH︱python实现局部敏感哈希——LSHash(二) 相似性︱python+opencv实现pHash算法+hamming距离(simhash)(三) LSH︱python实现MinHash-LSH及MinHash LSH Forest——datasketch(四)

datasketch这个模块有非常多的功能,主要是:

  • HyperLogLog
  • HyperLogLog++
  • MinHash LSH
  • MinHash LSH Ensemble
  • MinHash LSH Forest
  • MinHash
  • Weighted MinHash

其中MinHash 与simHash不同,其主要采用的是Jaccard距离,LSHForest/sklearn是常规的Hash函数,所以可以用cosine距离。 其中,Jaccard距离较多地可以应用在BOW模型之上,图片和文字在用词袋模型表征特征的时候,较适合应用。 .

一、MinHash

在检索场景应用比较多,每当有新的搜索,需要创建一个新的MinHash,同时与候选集中求Jaccard相似性,然后根据一些阈值筛选符合的样例。

1、MinHash 主函数

class datasketch.MinHash(num_perm=128, seed=1, hashobj=<built-in function openssl_sha1>, hashvalues=None, permutations=None)

MinHash 哈希化专属的距离是 Jaccard距离。

  • num_perm (int, optional)

哈希置换函数设定个数,如果hashvalues有值,那么该参数将被忽略。

  • seed (int, optional) — MinHash中随机种子。
  • hashobj (optional) — MinHash的哈希方程式。
  • hashvalues (numpy.array or list, optional) — 哈希内部状态。如果使用另外已经存在状态的MinHash,哈希初始化会更快
  • permutations (optional) — 哈希置换函数的参数。如果有已经存在状态的MinHash,会更快

当然,如果要节约内存可以使用: datasketch.LeanMinHash MinHash

2、MinHash案例

from datasketch import MinHash

data1 = ['minhash', 'is', 'a', 'probabilistic', 'data', 'structure', 'for',
        'estimating', 'the', 'similarity', 'between', 'datasets']
data2 = ['minhash', 'is', 'a', 'probability', 'data', 'structure', 'for',
        'estimating', 'the', 'similarity', 'between', 'documents']

m1, m2 = MinHash(), MinHash()
for d in data1:
    m1.update(d.encode('utf8'))
for d in data2:
    m2.update(d.encode('utf8'))
print("Estimated Jaccard for data1 and data2 is", m1.jaccard(m2))

s1 = set(data1)
s2 = set(data2)
actual_jaccard = float(len(s1.intersection(s2)))/float(len(s1.union(s2)))
print("Actual Jaccard for data1 and data2 is", actual_jaccard)

案例的大致步骤为:

  • MinHash初始化状态,需要预先设定MinHash()初始化
  • 内容哈希化,内容m1.update哈希化
  • jaccard距离,float(len(s1.intersection(s2)))/float(len(s1.union(s2)))用集合的方式求距离

另外:

  • 1、提高精度
m = MinHash(num_perm=256)

通过调整num_perm数量,来提高精度,代价是更多CPU消耗 + 更多内存

  • 2、哈希合并
m1.merge(m2)

联合两个minhash,这样就可以更快的进行并行parallel MapReduce

  • 3、求cardinality count
    def count(self):
        k = len(self)
        return np.float(k) / np.sum(self.hashvalues / np.float(_max_hash)) - 1.0

m.count()

二、MinHash LSH

LSH能够将相似的条例远大于非相似的,详细详细可见R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(一,基本原理)

1、主函数MinHash LSH

MinHashLSH(threshold=0.9, num_perm=128, weights=(0.5, 0.5), params=None)
  • threshold (float) – Jaccard 距离阈值设定,默认为0.9
  • num_perm (int, optional) – 哈希置换函数设定个数,在weighted-MinHash中为样本规模大小。
  • weights (tuple, optional) – 优化Jaccard 阈值,能够弹性选择。
  • params (tuple, optional) – bands 的数量与规模大小。

2、案例

from datasketch import MinHash, MinHashLSH

set1 = set(['minhash', 'is', 'a', 'probabilistic', 'data', 'structure', 'for',
            'estimating', 'the', 'similarity', 'between', 'datasets'])
set2 = set(['minhash', 'is', 'a', 'probability', 'data', 'structure', 'for',
            'estimating', 'the', 'similarity', 'between', 'documents'])
set3 = set(['minhash', 'is', 'probability', 'data', 'structure', 'for',
            'estimating', 'the', 'similarity', 'between', 'documents'])

m1 = MinHash(num_perm=128)
m2 = MinHash(num_perm=128)
m3 = MinHash(num_perm=128)
for d in set1:
    m1.update(d.encode('utf8'))
for d in set2:
    m2.update(d.encode('utf8'))
for d in set3:
    m3.update(d.encode('utf8'))

# Create LSH index
lsh = MinHashLSH(threshold=0.5, num_perm=128)
lsh.insert("m2", m2)
lsh.insert("m3", m3)
result = lsh.query(m1)
print("Approximate neighbours with Jaccard similarity > 0.5", result)

案例的大致步骤为:

  • MinHash初始化状态,需要预先设定MinHash(num_perm=128)初始化状态
  • 内容哈希化,内容m1.update哈希化
  • MinHashLSH初始化, MinHashLSH(threshold=0.5, num_perm=128)
  • 内容载入LSH系统,lsh.insert(“m3”, m3),其中insert(Hash名称,minHash值)
  • 查询,lsh.query,其中查询的内容也必须minHash化。

同时,MinHashLSH不能采用多项内容 Top-K 查询。可以使用之后的 MinHash LSH Forest,同时Jaccard 距离可能不是最好的选择,也可以选择其他的距离,可见MinHash LSH Ensemble.

额外的其他内容:

  • 移除相关哈希值:
remove(key)

与lsh.insert(“m2”, m2),对应。

  • 是否为空
is_empty()

返回的是布尔值,检查hash是否为空 .

三、MinHash LSH Forest——局部敏感随机投影森林

与文章LSH︱python实现局部敏感随机投影森林——LSHForest/sklearn(一)类似,都是用来做随机投影森林的,这里专门使用minhash。 MinHash LSH可以使用radius 或阈值查询。同时,MinHash LSH Forest支持指定top-K查询内容。forest更少地占用空间。

1、主函数

MinHashLSHForest(num_perm=128, l=8)

与原论文使用prefix trees不同,作者这里把哈希值存储在每个哈希列表中。 num_perm就是随机置换函数的个数,l代表prefix trees的数量。

其中每个前缀树的最大深度K取决于num_perm、l

k = int(num_perm / l)

.

2、案例

from datasketch import MinHashLSHForest, MinHash

data1 = ['minhash', 'is', 'a', 'probabilistic', 'data', 'structure', 'for',
        'estimating', 'the', 'similarity', 'between', 'datasets']
data2 = ['minhash', 'is', 'a', 'probability', 'data', 'structure', 'for',
        'estimating', 'the', 'similarity', 'between', 'documents']
data3 = ['minhash', 'is', 'probability', 'data', 'structure', 'for',
        'estimating', 'the', 'similarity', 'between', 'documents']

# Create MinHash objects
m1 = MinHash(num_perm=128)
m2 = MinHash(num_perm=128)
m3 = MinHash(num_perm=128)
for d in data1:
    m1.update(d.encode('utf8'))
for d in data2:
    m2.update(d.encode('utf8'))
for d in data3:
    m3.update(d.encode('utf8'))

# Create a MinHash LSH Forest with the same num_perm parameter
forest = MinHashLSHForest(num_perm=128)

# Add m2 and m3 into the index
forest.add("m2", m2)
forest.add("m3", m3)

# IMPORTANT: must call index() otherwise the keys won't be searchable
forest.index()

# Check for membership using the key
print("m2" in forest)
print("m3" in forest)

# Using m1 as the query, retrieve top 2 keys that have the higest Jaccard
result = forest.query(m1, 2)
print("Top 2 candidates", result)

案例的大致步骤为:

  • MinHash初始化状态,需要预先设定MinHash(num_perm=128)初始化状态
  • 内容哈希化,内容m1.update哈希化
  • MinHashLSHForest初始化, MinHashLSHForest(num_perm=128)
  • 内容载入投影森林之中,forest.add(“m2”, m2)
  • forest.index(),相当于update一下,更新一下
  • 查询,lsh.query,其中查询的内容也必须minHash化。 .

四、MinHash LSH Ensemble

新距离:Containment,简单介绍一下。

案例一则:

from datasketch import MinHashLSHEnsemble, MinHash

set1 = set(["cat", "dog", "fish", "cow"])
set2 = set(["cat", "dog", "fish", "cow", "pig", "elephant", "lion", "tiger",
             "wolf", "bird", "human"])
set3 = set(["cat", "dog", "car", "van", "train", "plane", "ship", "submarine",
             "rocket", "bike", "scooter", "motorcyle", "SUV", "jet", "horse"])

# Create MinHash objects
m1 = MinHash(num_perm=128)
m2 = MinHash(num_perm=128)
m3 = MinHash(num_perm=128)
for d in set1:
    m1.update(d.encode('utf8'))
for d in set2:
    m2.update(d.encode('utf8'))
for d in set3:
    m3.update(d.encode('utf8'))

# Create an LSH Ensemble index with a threshold
lshensemble = MinHashLSHEnsemble(threshold=0.8, num_perm=128)

# Index takes an iterable of (key, minhash, size)
lshensemble.index([("m2", m2, len(set2)), ("m3", m3, len(set3))])

# Check for membership using the key
print("m2" in lshensemble)
print("m3" in lshensemble)

# Using m1 as the query, get an result iterator
print("Sets with containment > 0.8:")
for key in lshensemble.query(m1, len(set1)):
    print(key)

.

五、Weighted MinHash

Jaccard距离加权

import numpy as np
from datasketch import WeightedMinHashGenerator
from datasketch import MinHashLSH

v1 = np.random.uniform(1, 10, 10)
v2 = np.random.uniform(1, 10, 10)
v3 = np.random.uniform(1, 10, 10)
mg = WeightedMinHashGenerator(10, 5)
m1 = mg.minhash(v1)
m2 = mg.minhash(v2)
m3 = mg.minhash(v3)

# Create weighted MinHash LSH index
lsh = MinHashLSH(threshold=0.1, sample_size=5)
lsh.insert("m2", m2)
lsh.insert("m3", m3)
result = lsh.query(m1)
print("Approximate neighbours with weighted Jaccard similarity > 0.1", result)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CSDN技术头条

数据可视化的10个关键术语

Format 交互方式 Interactive visualisations allow you to modify, manipulate and explo...

1877
来自专栏诸葛青云的专栏

Python识别验证码!学会这步,百分之60的网站你基本都能识别了!

127是我们设定的阈值,像素值大于127被置成了0,小于127的被置成了255。处理后的图片变成了这样

660
来自专栏落影的专栏

OpenGL光照学习以及OpenGL4环境

前言 最近稍有空闲,整理下之前学习光照的笔记,以及在配置OpenGL4环境过程中遇到的问题。 光照 1、模拟灯光 模拟灯光:通过GPU来计算场景中的几何图...

3867
来自专栏人人都是极客

【免费教学】Tensorflow Lite极简入门

边缘计算时代离我们越来越近,当前嵌入式设备的智能框架还是 TensorFlow Lite比较成熟,这里我准备用一系列免费课程和大家一起讨论下 TensorFlo...

2012
来自专栏Small Code

【TensorFlow】理解 Estimators 和 Datasets

Google 在 2017 年 9 月 12 号的博文 Introduction to TensorFlow Datasets and Estimators 中...

1.1K8
来自专栏大数据文摘

三种可视化方法,手把手教你用R绘制地图网络图!

1974
来自专栏懒人开发

(7.1)James Stewart Calculus 5th Edition:Integration by Parts

注意: 这样做,目的是为了 降阶, 如果转换后,对应的没有起到 降阶 的作用,就没有什么意义了

941
来自专栏大数据挖掘DT机器学习

【案例】SPSS商业应用系列第3篇:最近邻元素分析模型

应用 IBM SPSS Statistic 的最近邻元素分析模型对汽车厂商预研车型进行市场评估。 某汽车厂商的研发部门提出了多个预研车型的技术指标...

40110
来自专栏数据科学与人工智能

【Python环境】监督学习之KNN算法

1、ipython是一个python的交互式shell,比默认的python shell好用得多,支持变量自动补全,自动缩进,支持bash shell命令,内置...

2447
来自专栏owent

2018年的新通用伪随机数算法(xoshiro / xoroshiro)的C++(head only)实现

前段时间看到说Lua 5.4用了一种新的通用随机数算法,替换掉本来内部使用的CRT的随机数引擎。我看了一下大致的实现,CPU和空间复杂度任然保持了一个较低的水平...

1102

扫码关注云+社区