python︱sklearn一些小技巧的记录(pipeline...)

sklearn里面包含内容太多,所以一些实用小技巧还是挺好用的。

1、LabelEncoder

简单来说 LabelEncoder 是对不连续的数字或者文本进行编号

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])

输出: array([0,0,3,2,1])

2、OneHotEncoder

OneHotEncoder 用于将表示分类的数据扩维:

from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
ohe.fit([[1],[2],[3],[4]])
ohe.transform([2],[3],[1],[4]).toarray()

输出:[ [0,1,0,0] , [0,0,1,0] , [1,0,0,0] ,[0,0,0,1] ] 正如keras中的keras.utils.to_categorical(y_train, num_classes)

.

3、sklearn.model_selection.train_test_split随机划分训练集和测试集

一般形式: train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和testdata,形式为:

X_train,X_test, y_train, y_test =
cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)

参数解释: - train_data:所要划分的样本特征集 - train_target:所要划分的样本结果 - test_size:样本占比,如果是整数的话就是样本的数量 - random_state:是随机数的种子。 - 随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。 随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则: - 种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

fromsklearn.cross_validation import train_test_split  
train= loan_data.iloc[0: 55596, :]  
test= loan_data.iloc[55596:, :]  
# 避免过拟合,采用交叉验证,验证集占训练集20%,固定随机种子(random_state)  
train_X,test_X, train_y, test_y = train_test_split(train,  
                                                   target,  
                                                   test_size = 0.2,  
                                                   random_state = 0)  
train_y= train_y['label']  
test_y= test_y['label']  

.

4、pipeline

本节参考与文章:用 Pipeline 将训练集参数重复应用到测试集 pipeline 实现了对全部步骤的流式化封装和管理,可以很方便地使参数集在新数据集上被重复使用。

pipeline 可以用于下面几处:

  • 模块化 Feature Transform,只需写很少的代码就能将新的 Feature 更新到训练集中。
  • 自动化 Grid Search,只要预先设定好使用的 Model 和参数的候选,就能自动搜索并记录最佳的 Model。
  • 自动化 Ensemble Generation,每隔一段时间将现有最好的 K 个 Model 拿来做 Ensemble。

问题是要对数据集 Breast Cancer Wisconsin 进行分类, 它包含 569 个样本,第一列 ID,第二列类别(M=恶性肿瘤,B=良性肿瘤), 第 3-32 列是实数值的特征。

from pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder

df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
                 'breast-cancer-wisconsin/wdbc.data', header=None)
                                 # Breast Cancer Wisconsin dataset

X, y = df.values[:, 2:], df.values[:, 1]

encoder = LabelEncoder()
y = encoder.fit_transform(y)
                    >>> encoder.transform(['M', 'B'])
                    array([1, 0])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=0)

我们要用 Pipeline 对训练集和测试集进行如下操作:

  • 先用 StandardScaler 对数据集每一列做标准化处理,(是 transformer)
  • 再用 PCA 将原始的 30 维度特征压缩的 2 维度,(是 transformer)
  • 最后再用模型 LogisticRegression。(是 Estimator)
  • 调用 Pipeline 时,输入由元组构成的列表,每个元组第一个值为变量名,元组第二个元素是 sklearn 中的 transformer 或 Estimator。

注意中间每一步是 transformer,即它们必须包含 fit 和 transform 方法,或者 fit_transform。 最后一步是一个 Estimator,即最后一步模型要有 fit 方法,可以没有 transform 方法。

然后用 Pipeline.fit对训练集进行训练,pipe_lr.fit(X_train, y_train) 再直接用 Pipeline.score 对测试集进行预测并评分 pipe_lr.score(X_test, y_test)

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

pipe_lr = Pipeline([('sc', StandardScaler()),
                    ('pca', PCA(n_components=2)),
                    ('clf', LogisticRegression(random_state=1))
                    ])
pipe_lr.fit(X_train, y_train)
print('Test accuracy: %.3f' % pipe_lr.score(X_test, y_test))

                # Test accuracy: 0.947

还可以用来选择特征:

例如用 SelectKBest 选择特征, 分类器为 SVM,

anova_filter = SelectKBest(f_regression, k=5)
clf = svm.SVC(kernel='linear')
anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)])

当然也可以应用 K-fold cross validation:

model = Pipeline(estimators)
seed = 7
kfold = KFold(n_splits=10, random_state=seed)
results = cross_val_score(model, X, Y, cv=kfold)
print(results.mean())

Pipeline 的工作方式:

当管道 Pipeline 执行 fit 方法时, 首先 StandardScaler 执行 fit 和 transform 方法, 然后将转换后的数据输入给 PCA, PCA 同样执行 fit 和 transform 方法, 再将数据输入给 LogisticRegression,进行训练。

参考: python 数据处理中的 LabelEncoder 和 OneHotEncoder sklearn 中的 Pipeline 机制 用 Pipeline 将训练集参数重复应用到测试集

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏好好学习吧

使用Python的turtle画小绵羊

今天学习使用turtle画图,本来想实现个3D效果,结果2D都画了半天,画圆被绕晕了

923
来自专栏程序员的诗和远方

Canvas基础-粒子动画Part1

网页上各种酷炫的粒子动画看的人眼花缭乱,实际上原理却非常简单。 获取像素信息 首先我们需要画张图到Canvas上,这里因为我懒的扣图(实际上是不会),就找...

2896
来自专栏数值分析与有限元编程

Jacobi方法求矩阵特征值的算例及代码

Jacobi方法用于求实对称阵的全部特征值、特征向量。对于实对称阵 A,必有正交阵 Q ,使 QT A Q = Λ 其中Λ是对角阵,其主对角线元素λii是A的特...

2104
来自专栏HTML5学堂

让元素呈现出“七十二变”的效果,就是这么简单

HTML5学堂:作为前端开发者,总会在设计图上看到各种各样奇怪的图形,想用图片解决又怕觉得很low,想用其它方法又一下子反应不过来。不管现在的你有没有面对过这样...

3165
来自专栏小石不识月

用粒子群优化算法求解旅行商问题

粒子群优化算法采用一种人工智能的形式来解决问题。这种算法对于求解那些使用了多个连续变化的值的函数来说,尤为有效。这篇文章将会介绍如何修改粒子群算法,以使用离散固...

2568
来自专栏进步博客

深入理解视觉格式化模型( VISUAL FORMATTING MODEL)

“理论不懂就实践,实践不会就学理论”,非常赞同bluedavy的这句话。实践过程中经常会遇到某个属性的使用,浏览器渲染效果与预期效果不符,虽然通过死记硬背能避免...

1143
来自专栏文武兼修ing——机器学习与IC设计

基于sklearn的决策树分类器理论基础代码实现

理论基础 决策树 决策树是一种树形结构的机器学习算法,所有的样本起始于根节点,每个具有子节点的父节点都有一个判断,根据判断结果将样本向子节点分流,测试样本从根节...

2958
来自专栏算法修养

POJ 2609 Ferry Loading(双塔DP)

Ferry Loading Time Limit: 1000MS Memory Limit: 65536K Total Submissions...

3166
来自专栏PPV课数据科学社区

【学习】R语言基础画图

1.plot函数  plot(x,y,xlim=c(0,100),ylim=c(0.4,1), type="o",lwd=2,col=2,pch=24,...

3215
来自专栏Code_iOS

OpenGL ES 2.0 (iOS)[02]:修复三角形的显示

从图可以看出,这三个数据形成的其实是一个等边直角三角形,而在 iOS 模拟器中通过 OpenGL ES 绘制出来的是直角三角形,所以是有问题的,三角形被拉伸了。

731

扫码关注云+社区