算法优化二——如何提高人脸检测正确率

零、检测

  接上篇博文继续探讨人脸检测的相关内容,本文会给出Opencv中自带的人脸检测的相关对比以及Opnev检测中常用的标注等相关操作。人脸检测是一个非常经典的问题,但是还是有一些常见的问题出现在实际使用当中:   (1)误检(把非人脸的物体当作人脸)较多,非人脸图像当作人脸送入后续算法,会引起一系列不良后果。   (2)漏检问题,例如戴墨镜、大胡子、逆光条件、黑种人、倾斜姿态较大的脸无法检测到。

一、人脸检测分类器对比

序号

级联分类器的类型

XML文件名

1

人脸检测器(默认)

haarcascade_frontalface_default.xml

2

人脸检测器(快速的Haar)

haarcascade_frontalface_alt2.xml

3

人脸检测器(快速的LBP)

lbpcascade_frontalface.xml

4

人脸检测器(Tree)

haarcascade_frontalface_alt_tree.xml

5

人脸检测器(Haar_1)

haarcascade_frontalface_alt.xml

Haar特征,毫无疑问Haar特征用在人脸检测里具有里程碑式的意义。博主针对正面人脸分类器进行了实验,总共有4个,alt、alt2、alt_tree、default。对比下来发现alt和alt2的效果比较好,alt_tree耗时较长,default是一个轻量级的,经常出现误检测。针对alt和alt2两者,在同一个视频的对比中检测部分alt要略微好于alt2。接下来是一些具体的对比:

(1)检测时间上对比

图像

Haar_alt

Haar_alt2

lbp

复杂背景图像

2054

2309

948

简单背景图像

912

964

326

(2)检测结果上对比:

图像

Haar_alt

Haar_alt2

lbp

复杂背景图像

70

70

69

简单背景图像

277

283

292

二、detectMultiScale函数

  选择最终的人脸分类器后,若想在这个基础上继续优化,那就试试这个detectMultiScale函数。具体可以查看Opencv源码,下面给出这个函数的讲解:

void detectMultiScale(   
    const Mat& image,   
    CV_OUT vector<Rect>& objects,   
    double scaleFactor = 1.1,   
    int minNeighbors = 3,    
    int flags = 0,   
    Size minSize = Size(),   
    Size maxSize = Size()   
); 

函数介绍: 参数1:image–待检测图片,一般为灰度图像加快检测速度; 参数2:objects–被检测物体的矩形框向量组; 参数3:scaleFactor–表示在前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%; 参数4:minNeighbors–表示构成检测目标的相邻矩形的最小个数(默认为3个)。 如果组成检测目标的小矩形的个数和小于 min_neighbors - 1 都会被排除。如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框; 参数5:flags–要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,函数将会使用Canny边缘检测来排除边缘过多或过少的区域, 因为这些区域通常不会是人脸所在区域; 参数6、7:minSize和maxSize用来限制得到的目标区域的范围。如果视频中误检到很多无用的小方框,那么就把minSize的尺寸改大一些,默认的为30*30。

三、视频标注

  视频标注中必不可少的就是画框和文字标注:

//视频画框
for (vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++)
        rectangle(img, cvPoint(r->x, r->y), cvPoint(r->x + r->width - 1, r->y + r->height - 1), Scalar(255, 0, 255), 3, 8, 0);

//文字标注
putText(imgForShow, p.first, Point(BBox.x, BBox.y), FONT_HERSHEY_PLAIN, 2, Scalar(255, 0, 0));

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

用贝叶斯判别分析方法预测股票涨跌

作者: 依然很拉风 原文:数据人网 http://shujuren.org/article/164.html 判别分析也是一种分类器,与逻辑回归相比,它具有以...

2907

用人工神经网络预测急诊科患者幸存还是死亡

Apache Spark是一个基于集群的开源计算系统,主要用于处理非常大的数据集。并行计算和容错功能是Spark体系结构的内置功能。Spark Core是Spa...

2387
来自专栏大数据挖掘DT机器学习

R语言多元统计包简介:各种假设检验 统计方法 聚类分析 数据处理

基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面做个简要的综述。多元统计的特殊应用在CRNA的其它任务列表(...

3744
来自专栏量子位

码农の带娃绝技:TensorFlow+传感器,200美元自制猜拳手套

王小新 编译自 Google Cloud Blog 量子位 出品 | 公众号 QbitAI 你们程序员啊,连带娃都这么技术流…… 今年夏天,谷歌云负责维护开发者...

3485
来自专栏ATYUN订阅号

机器学习:Python测试线性可分性的方法

? 线性和非线性分类 两个子集是线性可分的,如果存在一个超平面将每组的元素的所有元素的一组驻留在另一侧的超平面其他设置。我们可以描述它在2D绘图中通过分离线,...

3745
来自专栏一棹烟波

全景图转小行星视角投影原理详解

全景图是2:1比例的图片,一般是多张图像拼接而成。全景图2:1的比例可以很方便的映射到球面,而球坐标可以很方便的实现各种有趣的投影。比如小行星,水晶球,局部透视...

482
来自专栏海天一树

Python从0实现朴素贝叶斯分类器

朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测。你可以使用这种监督性学习方法,对一个预测性建模问题进行概率建模。 给定一个类,朴素贝叶斯...

1692
来自专栏生信小驿站

Unsupervised clustering reveals new prostate cancer subtypes摘要介绍方法

601
来自专栏机器学习算法全栈工程师

Logistic回归实战篇之预测病马死亡率(三)

作 者:崔家华 编 辑:李文臣 四、使用Sklearn构建Logistic回归分类器 开始新一轮的征程,让我们看下Sklearn的Logistic回归分类器! ...

3659
来自专栏机器之心

资源 | MIT 新发布大型数据集 ADE20K:用于场景感知、语义理解等多种任务

选自CSAIL 机器之心编译 参与:黄小天、Smith 近日,MIT 通过官网发布了一款名为 ADE20K 的数据集,可用于场景感知、解析、分割、多物体识别和语...

3847

扫码关注云+社区