卷积神经网络中图像池化操作全解析

一 池化的过程

  卷积层是对图像的一个邻域进行卷积得到图像的邻域特征,亚采样层(池化层)就是使用pooling技术将小邻域内的特征点整合得到新的特征。   在完成卷积特征提取之后,对于每一个隐藏单元,它都提取到 (r-a+1)×(c-b+1)个特征,把它看做一个矩阵,并在这个矩阵上划分出几个不重合的区域,然后在每个区域上计算该区域内特征的均值或最大值,然后用这些均值或最大值参与后续的训练,这个过程就是池化。

二 池化的优点

1 显著减少参数数量

  通过卷积操作获得了图像的特征之后,若直接用该特征去做分类则面临计算量的挑战。而Pooling的结果可以使得特征减少,参数减少。 例如:对于一个 96X96 像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) * (96 − 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样本都会得到一个 892 * 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。

2 池化单元具有平移不变性

  pooling可以保持某种不变性(旋转、平移、伸缩等)

三 池化的方式

1 一般池化(General Pooling)

1) mean-pooling,即对邻域内特征点只求平均,对背景保留更好;

2) max-pooling,即对邻域内特征点取最大,对纹理提取更好;

3) Stochastic-pooling,介于两者之间,通过对像素点按照数值大小赋予概率,再按照概率进行亚采样;

  特征提取的误差主要来自两个方面:(1)邻域大小受限造成的估计值方差增大;(2)卷积层参数误差造成估计均值的偏移。一般来说,mean-pooling能减小第一种误差,更多的保留图像的背景信息,max-pooling能减小第二种误差,更多的保留纹理信息。在平均意义上,与mean-pooling近似,在局部意义上,则服从max-pooling的准则。

下面给出matlab中max-pooling的代码实现:

function [outputMap, outputSize] =  max_pooling(inputMap, inputSize, poolSize, poolStride)
% ==========================================================
% INPUTS:
%        inputMap - input map of the max-pooling layer
%        inputSize - X-size(equivalent to Y-size) of input map
%        poolSize - X-size(equivalent to Y-size) of receptive field
%        poolStride -  the stride size between successive pooling squares.
% OUTPUT:
%        outputMap - output map of the max-pooling layer
%        outputSize - X-size(equivalently, Y-size) of output map
% ==========================================================
outputSize = inputSize/ poolStride;
inputChannel = size(inputMap, 3);

padMap = padarray(inputMap, [poolSize poolSize],0, 'post');
outputMap = zeros(outputSize, outputSize, inputChannel, 'single');

for j = 1:outputSize
    for i = 1:outputSize
        startX = 1 + (i-1)*poolStride;
        startY = 1 + (j-1)*poolStride;
        poolField = padMap(startY:startY+poolSize-1,startX:startX+poolSize-1,:);
        poolOut = max(reshape(poolField, [poolSize*poolSize,inputChannel]),[],1);
        outputMap(j,i,:) = reshape(poolOut,[1 1 inputChannel]);
    end
end

2.重叠池化(Overlapping Pooling)

  重叠池化的相邻池化窗口之间会有重叠区域。该部分详见参考文献[4]

3.空间金字塔池化(Spatial Pyramid Pooling)

  空间金字塔池化拓展了卷积神经网络的实用性,使它能够以任意尺寸的图片作为输入。该部分详见参考文献[3]

四 参考文献

[1]池化 http://ufldl.stanford.edu/wiki/index.php/%E6%B1%A0%E5%8C%96

[2]卷积神经网络初探 - Lee的白板报的个人空间 - 开源中国社区 http://my.oschina.net/findbill/blog/550565

[3]池化方法总结http://blog.csdn.net/mao_kun/article/details/50533788

[4] Krizhevsky, I. Sutskever, andG. Hinton, “Imagenet classification with deep convolutional neural networks,”in NIPS,2012.

[5]http://yann.lecun.com/exdb/publis/pdf/boureau-icml-10.pdf

[6]http://yann.lecun.com/exdb/publis/pdf/boureau-cvpr-10.pdf

[7]http://yann.lecun.com/exdb/publis/pdf/boureau-iccv-11.pdf

[8]http://ais.uni-bonn.de/papers/icann2010_maxpool.pdf

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Petrichor的专栏

深度学习: CV顶会 & CV顶刊

[1] 计算机视觉顶尖期刊和会议有哪些 [2] cvpr中poster,oral,spotlight的区别是什么 [3] AI学术会议Deadline清...

1493
来自专栏机器学习算法与理论

基于Triplet loss函数训练人脸识别深度网络(Open Face)

Git:  http://cmusatyalab.github.io/openface/ FaceNet’s innovation comes from fo...

4066
来自专栏Petrichor的专栏

Image Segmentation(图像分割)综述

1013
来自专栏专知

线性回归:简单线性回归详解

【导读】本文是一篇专门介绍线性回归的技术文章,讨论了机器学习中线性回归的技术细节。线性回归核心思想是获得最能够拟合数据的直线。文中将线性回归的两种类型:一元线性...

3327
来自专栏红色石头的机器学习之路

台湾大学林轩田机器学习技法课程学习笔记16(完结) -- Finale

上节课我们主要介绍了Matrix Factorization。通过电影推荐系统的例子,介绍Matrix Factorization其实是一个提取用户特征,关于电...

2060
来自专栏文武兼修ing——机器学习与IC设计

神经网络压缩实验-Deep-compression实验准备剪枝实验量化实验

为了实现神经网络的deep compression,首先要训练一个深度神经网络,为了方便实现,这里实现一个两层卷积+两层MLP的神经网络

1642
来自专栏机器学习算法全栈工程师

听说比K-means厉害多了:谱聚类

地址:https://www.cnblogs.com/pinard/p/6221564.html

2072
来自专栏专知

概率论之概念解析:用贝叶斯推断进行参数估计

【导读】既昨天推出概率论之概念解析:极大似然估计,大家反响热烈,今天专知推出其续集——贝叶斯推断进行参数估计。本文是数据科学家Jonny Brooks-Bart...

3916
来自专栏机器学习算法原理与实践

谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时...

523
来自专栏Gaussic

Machine Learning笔记(一) 监督学习、非监督学习

对于要买房子的人,充分的市场调研可以充分的了解市场行情。假设你想买一栋 750 feet2 的房子,而在其他方面没有太大的要求,现已收集了许多房屋的尺寸极其对应...

361

扫码关注云+社区