卷积神经网络中图像池化操作全解析

一 池化的过程

  卷积层是对图像的一个邻域进行卷积得到图像的邻域特征,亚采样层(池化层)就是使用pooling技术将小邻域内的特征点整合得到新的特征。   在完成卷积特征提取之后,对于每一个隐藏单元,它都提取到 (r-a+1)×(c-b+1)个特征,把它看做一个矩阵,并在这个矩阵上划分出几个不重合的区域,然后在每个区域上计算该区域内特征的均值或最大值,然后用这些均值或最大值参与后续的训练,这个过程就是池化。

二 池化的优点

1 显著减少参数数量

  通过卷积操作获得了图像的特征之后,若直接用该特征去做分类则面临计算量的挑战。而Pooling的结果可以使得特征减少,参数减少。 例如:对于一个 96X96 像素的图像,假设我们已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 − 8 + 1) * (96 − 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样本都会得到一个 892 * 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合 (over-fitting)。

2 池化单元具有平移不变性

  pooling可以保持某种不变性(旋转、平移、伸缩等)

三 池化的方式

1 一般池化(General Pooling)

1) mean-pooling,即对邻域内特征点只求平均,对背景保留更好;

2) max-pooling,即对邻域内特征点取最大,对纹理提取更好;

3) Stochastic-pooling,介于两者之间,通过对像素点按照数值大小赋予概率,再按照概率进行亚采样;

  特征提取的误差主要来自两个方面:(1)邻域大小受限造成的估计值方差增大;(2)卷积层参数误差造成估计均值的偏移。一般来说,mean-pooling能减小第一种误差,更多的保留图像的背景信息,max-pooling能减小第二种误差,更多的保留纹理信息。在平均意义上,与mean-pooling近似,在局部意义上,则服从max-pooling的准则。

下面给出matlab中max-pooling的代码实现:

function [outputMap, outputSize] =  max_pooling(inputMap, inputSize, poolSize, poolStride)
% ==========================================================
% INPUTS:
%        inputMap - input map of the max-pooling layer
%        inputSize - X-size(equivalent to Y-size) of input map
%        poolSize - X-size(equivalent to Y-size) of receptive field
%        poolStride -  the stride size between successive pooling squares.
% OUTPUT:
%        outputMap - output map of the max-pooling layer
%        outputSize - X-size(equivalently, Y-size) of output map
% ==========================================================
outputSize = inputSize/ poolStride;
inputChannel = size(inputMap, 3);

padMap = padarray(inputMap, [poolSize poolSize],0, 'post');
outputMap = zeros(outputSize, outputSize, inputChannel, 'single');

for j = 1:outputSize
    for i = 1:outputSize
        startX = 1 + (i-1)*poolStride;
        startY = 1 + (j-1)*poolStride;
        poolField = padMap(startY:startY+poolSize-1,startX:startX+poolSize-1,:);
        poolOut = max(reshape(poolField, [poolSize*poolSize,inputChannel]),[],1);
        outputMap(j,i,:) = reshape(poolOut,[1 1 inputChannel]);
    end
end

2.重叠池化(Overlapping Pooling)

  重叠池化的相邻池化窗口之间会有重叠区域。该部分详见参考文献[4]

3.空间金字塔池化(Spatial Pyramid Pooling)

  空间金字塔池化拓展了卷积神经网络的实用性,使它能够以任意尺寸的图片作为输入。该部分详见参考文献[3]

四 参考文献

[1]池化 http://ufldl.stanford.edu/wiki/index.php/%E6%B1%A0%E5%8C%96

[2]卷积神经网络初探 - Lee的白板报的个人空间 - 开源中国社区 http://my.oschina.net/findbill/blog/550565

[3]池化方法总结http://blog.csdn.net/mao_kun/article/details/50533788

[4] Krizhevsky, I. Sutskever, andG. Hinton, “Imagenet classification with deep convolutional neural networks,”in NIPS,2012.

[5]http://yann.lecun.com/exdb/publis/pdf/boureau-icml-10.pdf

[6]http://yann.lecun.com/exdb/publis/pdf/boureau-cvpr-10.pdf

[7]http://yann.lecun.com/exdb/publis/pdf/boureau-iccv-11.pdf

[8]http://ais.uni-bonn.de/papers/icann2010_maxpool.pdf

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习、深度学习

人脸检测--FaceBoxes: A CPU Real-time Face Detector with High Accuracy

FaceBoxes: A CPU Real-time Face Detector with High Accuracy 人脸检测已经研究了很多年,有很多算法。但...

26210
来自专栏机器之心

深度 | L2正则化和对抗鲁棒性的关系

两个高维聚类由一个超平面分离,考虑超平面和图中水平线之间的夹角,在线性分类中,这个夹角取决于 L2 正则化的程度,你知道为什么吗?上图:L2 正则化程度较小;下...

1101
来自专栏深度学习那些事儿

深度学习中IU、IoU(Intersection over Union)的概念理解以及python程序实现

Intersection over Union是一种测量在特定数据集中检测相应物体准确度的一个标准。我们可以在很多物体检测挑战中,例如PASCAL VOC ch...

1963
来自专栏SnailTyan

Batch Normalization论文翻译——中英文对照

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Cov...

1921
来自专栏计算机视觉战队

每日一学——神经网络(上)

什么是神经网络?一开始,我将解释一种被称为“感知器”的人工神经元。感知器在20世纪五、六十年代由科学家 Frank Rosenblatt 发明,其受到 Warr...

2725
来自专栏企鹅号快讯

CrossValidated问答:神经网络和深度神经网络有什么不一样?

来源:CrossValidated 编译:weakish 深度网络,顾名思义,就是有“很多”层的网络。 那么到底多少层算深度呢?这个问题可能没有一个明确的答案。...

2067
来自专栏专知

机器学习的Pytorch实现资源集合

【导读】该项目用pytorch实现了从最基本的机器学习算法:回归、聚类,到深度学习、强化学习等。该项目的目的不是生成尽可能优化和计算效率的算法,而是以透明和可访...

1001
来自专栏媒矿工厂

面向视频编解码后处理的深度学习方法进展

接前一帖(适用于视频编码帧间预测分数像素插值的卷积神经网络方法简介),今天继续介绍一类基于人工智能的视频处理技术——深度学习在视频后处理中的应用。 1 背景介绍...

5758
来自专栏深度学习计算机视觉

【人脸检测】Compact Cascade CNN和MTCNN算法

【文章导读】目前人脸识别技术已经遍地开花,火车站、机场、会议签到等等领域都有应用,人脸识别的过程中有个重要的环节叫做人脸检测,顾名思义就是在一张图片中找出所有的...

401
来自专栏fangyangcoder

GAN笔记——理论与实现

GAN这一概念是由Ian Goodfellow于2014年提出,并迅速成为了非常火热的研究话题,GAN的变种更是有上千种,深度学习先驱之一的Yann LeCun...

812

扫码关注云+社区