推荐算法(一)——音乐歌单智能推荐

题记:推荐引擎根据的分类根据数据源,分为基于人口统计学的(用户年龄或性别相同判定为相似用户)、基于内容的(物品具有相同关键词和Tag,没有考虑人为因素),以及基于协同过滤的推荐(发现物品,内容或用户的相关性推荐,分为三个子类,下文阐述);        根据其建立方式,分为基于物品和用户本身的(用户-物品二维矩阵描述用户喜好,聚类算法)、基于关联规则的(The Apriori algorithm算法是一种最有影响的挖掘布尔关联规则频繁项集的算法)、以及基于模型的推荐(机器学习,所谓机器学习,即让计算机像人脑一样持续学习,是人工智能领域内的一个子领域)。

推荐算法: 潜在因子(Latent Factor)算法。 应用领域:“网易云音乐歌单个性化推荐”、“豆瓣电台音乐推荐”等。 关键因素: 评分矩阵的UV分解的理解。

算法思想:        每个用户(user)都有自己的偏好,比如A喜欢带有小清新的、吉他伴奏的、王菲等元素(latent factor),如果一首歌(item)带有这些元素,那么就将这首歌推荐给该用户,也就是用元素去连接用户和音乐。每个人对不同的元素偏好不同,而每首歌包含的元素也不一样。我们希望能找到这样两个矩阵:

     实际上你可以理解为latent factor是对用户属性和音乐属性的双重降维(相当于把高维的用户\音乐属性降维到一个k维的隐空间进行表达),将用户属性\音乐属性都使用一个k维的向量表示,最终预测出某一用户对某一音乐的评分即为这两个向量的内积。 一,,表示不同的用户对于不用元素的偏好程度,1代表很喜欢,0代表不喜欢。比如下面这样:

二,潜在因子-音乐矩阵P,表示每种音乐含有各种元素的成分,比如下表中,音乐A是一个偏小清新的音乐,含有小清新这个Latent Factor的成分是0.9,重口味的成分是0.1,优雅的成分是0.2……

       利用这两个矩阵,我们能得出张三对音乐A的喜欢程度是:张三对小清新的偏好音乐A含有小清新的成分+对重口味的偏好音乐A含有重口味的成分+对优雅的偏好*音乐A含有优雅的成分+……

       即:0.6*0.9+0.8*0.1+0.1*0.2+0.1*0.4+0.7*0=0.69        每个用户对每首歌都这样计算可以得到不同用户对不同歌曲的评分矩阵。(注,这里的破浪线表示的是估计的评分,接下来我们还会用到不带波浪线的R表示实际的评分):

     因此我们队张三推荐四首歌中得分最高的B,对李四推荐得分最高的C,王五推荐B。 如果用矩阵表示即为:

       下面问题来了,这个潜在因子(latent factor)是怎么得到的呢?     由于面对海量的让用户自己给音乐分类并告诉我们自己的偏好系数显然是不现实的,事实上我们能获得的数据只有用户行为数据。我们沿用的量化标准:单曲循环=5, 分享=4, 收藏=3, 主动播放=2 , 听完=1, 跳过=-2 , 拉黑=-5,在分析时能获得的实际评分矩阵R,也就是输入矩阵大概是这个样子:

    事实上这是个非常非常稀疏的矩阵,因为大部分用户只听过全部音乐中很少一部分。如何利用这个矩阵去找潜在因子呢?这里主要应用到的是矩阵的UV分解。也就是将上面的评分矩阵分解为两个低维度的矩阵,用Q和P两个矩阵的乘积去估计实际的评分矩阵,而且我们希望估计的评分矩阵

       对于一个大型的评分矩阵X(m*n,m为用户数,n为音乐数量,矩阵中每一项便是这一用户对这一音乐的评分,显然这会是一个非常稀疏的矩阵),我们希望由这一评分矩阵得到两个分解后的矩阵U(m*k,用户属性在隐空间内的表示)与V(n*k,音乐属性在隐空间内的表示),使得U乘以transpose(V)能够尽可能地逼近矩阵X,即由抽取的用户属性\音乐属性,我们可以“尽可能地还原出”原本输入的大型评分矩阵X——这一分解便被称为”UV分解”。        和实际的评分矩阵不要相差太多,也就是求解下面的目标函数:

       这里涉及到最优化理论,在实际应用中,往往还要在后面加上2范数的罚项,然后利用梯度下降法就可以求得这P,Q两个矩阵的估计值。这里我们就不展开说了。例如我们上面给出的那个例子可以分解成为这样两个矩阵:

       这两个矩阵相乘就可以得到估计的得分矩阵:

       将用户已经听过的音乐剔除后,选择分数最高音乐的推荐给用户即可(红体字)。

参考文献http://www.zhihu.com/question/26743347/answer/34714804

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

谷歌Gorila强化学习体系解析

1464
来自专栏牛客网

秋招提前批面经

末流985渣渣硕士,主投CV算法工程师,昨天有幸被阿里爸爸抽中,结束提前批全程陪跑的 0 offer 尴尬局面。现奉上面经回馈各位牛油,感谢牛客网

2073
来自专栏小小挖掘机

推荐系统遇上深度学习(十五)--强化学习在京东推荐中的探索

强化学习在各个公司的推荐系统中已经有过探索,包括阿里、京东等。之前在美团做过的一个引导语推荐项目,背后也是基于强化学习算法。本文,我们先来看一下强化学习是如何在...

3444
来自专栏Spark学习技巧

干货 :基于用户画像的聚类分析

6235
来自专栏PPV课数据科学社区

机器学习技术类书单推荐

机器学习技术类书单推荐,共11本: 《机器学习》 《图解机器学习》 《机器学习实战》【有电子版】 《机器学习系统设计》【有电子版】 《Python机器学习基础教...

36614
来自专栏AI科技评论

学界 | Hinton 谷歌大脑新作:通过给个体标签建模来提高分类能力

AI科技评论按:Geoffrey Hinton 于 2013 年加入谷歌,目前在谷歌大脑团队致力将深度学习应用于实践领域。近日,谷歌大脑团队推出了新作,一作 M...

3689
来自专栏大数据风控

Python中的结构分析pivot_table

结构分析 是在分组以及交叉的基础上,计算各组成部分所占的比重,进而分析总体的内部特征的一种分析方法。 这个分组主要是指定性分组,定性分组一般看结构,它的重点在于...

2318
来自专栏专知

KDD2018 网络表示学习最新教程:DeepWalk作者Perozzi等人带你探索最前沿

【导读】近日,数据挖掘领域最具影响力的学术会议之一的ACM SIGKDD (知识发现与数据挖掘会议)已于 8 月 19 日在英国伦敦召开。在这次会议上,来自伊利...

2.4K5
来自专栏新智元

【机械蛮力和人类智能】符号主义和联接主义的魔咒

人工智能领域的主要思想流派大致可以分为符号主义和联接主义。两种方法具有完全不同的哲学观点,计算方法和适用范围。两者都有着令人叹为观止的壮丽恢弘,也都有着自身难以...

3946
来自专栏AI科技评论

华为诺亚方舟实验室主任李航:自然语言处理的未来趋势

编者按:12月18日,腾讯大数据峰会暨KDD China技术峰会在深圳举行,华为诺亚方舟实验室主任李航博士在会上做了题为《自然语言处理中的深度学习:过去、现在和...

3696

扫码关注云+社区

领取腾讯云代金券