选择性模糊及其算法的实现。

     我们常见的模糊算法比如均值模糊、高斯模糊等其基本的过程都是计算一个像素周边的的某个领域内,相关像素的某个特征值的累加和及对应的权重,然后得到结果值。比如均值模糊的各像素的权重是一样的,而高斯模糊的权重和像素距离中心点的距离成高斯分布。这样的过程是无法区分出图像的边缘等信息的,导致被模糊后的图像细节严重丢失,一种简单的改进方式就是设置某个阈值,当领域像素和中心点像素的差距大于阈值时,设置其权重很小,甚至为0,这样对于本身比较平滑的区域,和原始的算法区别不大,而对于像素值变化较为明显的边缘地带,则能够有效地保留原始信息,这样就能起到降低噪音的同时保留边缘的信息。

      在实际的处理,小半径的领域往往处理能力有限,处理的结果不慎理想,而随着半径的增加,算法的直接实现耗时成平方关系增长,传统的优化方式由于这个判断条件的增加,已经无法继续使用,为了解决速度问题,我们可以采用基于直方图算法的优化,如果能够统计出领域内的直方图信息,上述的判断条件及权重计算就可以简单的用下述代码实现:

void Calc(unsigned short *Hist, int Intensity, unsigned char *&Pixel, int Threshold)        
{
    int K, Low, High, Sum = 0, Weight = 0;
    Low = Intensity - Threshold; High = Intensity + Threshold;
    if (Low < 0) Low = 0;
    if (High > 255) High = 255;    for (K = Low; K <= High; K++)    
    {
        Sum += Hist[K] * K;
        Weight += Hist[K];
    }
    if (Weight != 0) *Pixel = Sum / Weight;
}

      注意在for之前的越界判断。

      在任意半径局部直方图类算法在PC中快速实现的框架一文中我们已经实现了任意半径恒长时间的直方图信息的获取,因此算法的执行时间只于上for循环中的循环量有关,也就是取决于Threshold参数,当Threshold取得越大,则最终的效果就越接近标准的模糊算法(上述代码是接近均值模糊),而在实际有意义的算法应用中而只有Threshold往往要取得较小才有保边的意义,因此,计算量可以得到适度的控制。

      如果要实现选择性的高斯模糊,则要在for循环中的权重项目中再乘以一个系数,当然这会增加一定的计算量。

      我们选择了一些其他保边滤波器的测试图像进行了测试,在效果上通过调整参数能得到相当不错的效果,举例如下:

                            原图

                                                            结果图: 参数r =10, Threshold = 16

                         原图

                                                          结果图: 参数r =10, Threshold = 16

                   原图

                                                            结果图: 参数r =10, Threshold = 16

                原图

                                                           结果图: 参数r =10, Threshold = 40

      在处理时间上,使用如上参数,在I3的笔记本电脑上测试,一幅1024*768的彩色图像使用时间约为250ms,如果考虑使用YUV颜色空间中只处理Y分量,则速度越能提升到100ms,在结果上,同同样参数的表面模糊比较,似乎很类似,但比表面模糊速度快了近3倍。 

      附上工程函数的主要代码:

/// <summary>     
/// 实现图像选择性图像模糊效果,O(1)复杂度,最新整理时间 2015.8.1。
/// </summary>
/// <param name="Src">需要处理的源图像的数据结构。</param>
/// <param name="Dest">保存处理后的图像的数据结构。</param>
/// <param name="Radius">指定模糊取样区域的大小,有效范围[1,127]。</param>
/// <param name="Threshold">选项控制相邻像素色调值与中心像素值相差多大时才能成为模糊的一部分,色调值差小于阈值的像素被排除在模糊之外,有效范围[1,255]。</param> 
IS_RET __stdcall SelectiveBlur(TMatrix *Src, TMatrix *Dest, int Radius, int Threshold, EdgeMode Edge)
{
    if (Src == NULL || Dest == NULL) return IS_RET_ERR_NULLREFERENCE;
    if (Src->Data == NULL || Dest->Data == NULL) return IS_RET_ERR_NULLREFERENCE;
    if (Src->Width != Dest->Width || Src->Height != Dest->Height || Src->Channel != Dest->Channel || Src->Depth != Dest->Depth || Src->WidthStep != Dest->WidthStep) return IS_RET_ERR_PARAMISMATCH;
    if (Src->Depth != IS_DEPTH_8U || Dest->Depth != IS_DEPTH_8U) return IS_RET_ERR_NOTSUPPORTED;
    if (Radius < 0 || Radius >= 127 || Threshold < 2 || Threshold > 255) return IS_RET_ERR_ARGUMENTOUTOFRANGE;

    IS_RET Ret = IS_RET_OK;

    if (Src->Data == Dest->Data)
    {
        TMatrix *Clone = NULL;
        Ret = IS_CloneMatrix(Src, &Clone);
        if (Ret != IS_RET_OK) return Ret;
        Ret = SelectiveBlur(Clone, Dest, Radius, Threshold, Edge);
        IS_FreeMatrix(&Clone);
        return Ret;
    }
    if (Src->Channel == 1)
    {
        TMatrix *Row = NULL, *Col = NULL;
        unsigned char *LinePS, *LinePD;
        int X, Y, K,  Width = Src->Width, Height = Src->Height;
        int *RowOffset, *ColOffSet;
        
        unsigned short *ColHist    = (unsigned short *)IS_AllocMemory(256 * (Width + 2 * Radius) * sizeof(unsigned short), true);    
        if (ColHist == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done8;}
        unsigned short *Hist    = (unsigned short *)IS_AllocMemory(256 * sizeof(unsigned short), true);    
        if (Hist == NULL) {Ret = IS_RET_ERR_OUTOFMEMORY; goto Done8;}

        Ret = GetValidCoordinate(Width, Height, Radius, Radius, Radius, Radius, Edge, &Row, &Col);        //    获取坐标偏移量
        if (Ret != IS_RET_OK) goto Done8;
    
        ColHist += Radius * 256;        RowOffset = ((int *)Row->Data) + Radius;        ColOffSet = ((int *)Col->Data) + Radius;                //    进行偏移以便操作

        for (Y = 0; Y < Height; Y++)
        {
            if (Y == 0)                                            //    第一行的列直方图,要重头计算
            {
                for (K = -Radius; K <= Radius; K++)                    
                {
                    LinePS = Src->Data + ColOffSet[K] * Src->WidthStep;
                    for (X = -Radius; X < Width + Radius; X++)
                    {
                        ColHist[X * 256 + LinePS[RowOffset[X]]]++;
                    }
                }
            }
            else                                                //    其他行的列直方图,更新就可以了
            {
                LinePS = Src->Data + ColOffSet[Y - Radius - 1] * Src->WidthStep;        
                for (X = -Radius; X < Width + Radius; X++)        // 删除移出范围内的那一行的直方图数据
                {
                    ColHist[X * 256 + LinePS[RowOffset[X]]]--;
                }

                LinePS = Src->Data + ColOffSet[Y + Radius] * Src->WidthStep;
                for (X = -Radius; X < Width + Radius; X++)        // 增加进入范围内的那一行的直方图数据
                {
                    ColHist[X * 256 + LinePS[RowOffset[X]]]++;
                }

            }

            memset(Hist, 0, 256 * sizeof(unsigned short));        //    每一行直方图数据清零先

            LinePS = Src->Data + Y * Src->WidthStep;
            LinePD = Dest->Data + Y * Dest->WidthStep;

            for (X = 0; X < Width; X++)
            {
                if (X == 0)
                {
                    for (K = -Radius; K <= Radius; K++)            //    行第一个像素,需要重新计算    
                        HistgramAddShort(ColHist + K * 256, Hist);
                }
                else
                {
                    HistgramSubAddShort(ColHist + RowOffset[X - Radius - 1] * 256, ColHist + RowOffset[X + Radius] * 256, Hist);  //    行内其他像素,依次删除和增加就可以了
                }
                Calc(Hist, LinePS[0], LinePD, Threshold);    
                
                LinePS++;
                LinePD++;
            }
        }
        ColHist -= Radius * 256;        //    恢复偏移操作
    Done8:
        IS_FreeMatrix(&Row);
        IS_FreeMatrix(&Col);
        IS_FreeMemory(ColHist);
        IS_FreeMemory(Hist);

        return Ret;
    }
    else
    {
        TMatrix *Blue = NULL, *Green = NULL, *Red = NULL, *Alpha = NULL;            //    由于C变量如果不初始化,其值是随机值,可能会导致释放时的错误。
        IS_RET Ret = SplitRGBA(Src, &Blue, &Green, &Red, &Alpha);
        if (Ret != IS_RET_OK) goto Done24;
        Ret = SelectiveBlur(Blue, Blue, Radius, Threshold, Edge);
        if (Ret != IS_RET_OK) goto Done24;
        Ret = SelectiveBlur(Green, Green, Radius, Threshold, Edge);
        if (Ret != IS_RET_OK) goto Done24;
        Ret = SelectiveBlur(Red, Red, Radius, Threshold, Edge);
        if (Ret != IS_RET_OK) goto Done24;                                            //    32位的Alpha不做任何处理,实际上32位的相关算法基本上是不能分通道处理的
        CopyAlphaChannel(Src, Dest);
        Ret = CombineRGBA(Dest, Blue, Green, Red, Alpha);
    Done24:
        IS_FreeMatrix(&Blue);
        IS_FreeMatrix(&Green);
        IS_FreeMatrix(&Red);
        IS_FreeMatrix(&Alpha);
        return Ret;
    }
}

      测试源代码及工程下载地址(VS2010开发): SelectiveBlur.rar

************作者: laviewpbt   时间: 2015.8.1    联系QQ:  33184777 转载请保留本行信息***************

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

Python机器学习——线性模型

最近断断续续地在接触一些python的东西。按照我的习惯,首先从应用层面搞起,尽快入门,后续再细化一 些技术细节。找了一些资料,基本语法和数据结构搞定之后...

39860
来自专栏专知

【论文推荐】最新八篇知识图谱相关论文—神经信息检索、可解释推理网络、Zero-Shot、上下文、Attentive RNN

【导读】专知内容组今天为大家推出八篇知识图谱(Knowledge Graph)相关论文,欢迎查看!

37430
来自专栏专知

【论文推荐】最新六篇推荐系统相关论文—注意力机制、多任务、协同跨网络、非结构化文本、TransRev、章节推荐

34910
来自专栏一心无二用,本人只专注于基础图像算法的实现与优化。

基于局部均方差相关信息的图像去噪及其在实时磨皮美容算法中的应用。      在1979年Lee发表的论文《Lee Filter Digital Image Enhancement and Noise

     在1979年Lee发表的论文《Lee Filter Digital Image Enhancement and Noise Filtering by ...

27950
来自专栏专知

【论文推荐】最新七篇自动问答相关论文—答案重排序、电影问答、句子间交互、用户意图、实体链接、多尺度匹配对抗训练

34730
来自专栏Java与Android技术栈

二值图像分析:案例实战(文本分离+硬币计数)

在实际应用中,很多图像的分析最终都转换为二值图像的分析,比如:医学图像分析、前景检测、字符识别,形状识别。二值化+数学形态学能解决很多计算机识别工程中目标提取的...

23430
来自专栏专知

【论文推荐】最新八篇主题模型相关论文—主题建模优化、变分推断、情绪强度、神经语言模型、搜索、社区聚合、主题建模的问题、光谱学习

【导读】专知内容组整理了最近八篇主题模型(Topic Model)相关文章,为大家进行介绍,欢迎查看! 1. Application of Rényi and ...

489120
来自专栏专知

【紫冬分享】文章想投哪里?这里有2019年AI最全会议信息!

今天小编与大家分享的是2019年与AI相关最齐全的会议信息,涵盖控制、机器人、模式识别、机器学习、人工智能、计算机视觉等领域,共计136个学术会议。部分会议已经...

1.1K30
来自专栏专知

【论文推荐】最新八篇主题模型相关论文—在线光谱学习、PAM变分推断、章节推荐、多芯片系统、文本分析、动态主题模型

17740
来自专栏专知

【重磅】深度学习顶会ICLR2018评审结果出炉,一文快速了解评审分析简报和评分最高的十篇论文

【导读】ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议),201...

34850

扫码关注云+社区

领取腾讯云代金券