一种强化的基于局部直方图裁剪均衡化的对比度调节算法。

  在很久前实现对比度受限的自适应直方图均衡化时,就曾经想过对该算法进行一定程度的扩展,之后使用自动对比度和自动色阶代替直方图均衡化也提出了新的算法,也达到了不错的效果。本文进一步对该算法进行一定程度的扩展和补充优化。

一、本文算法的概述

  根据选取的优化的水平和垂直网格数,将图像切分成一个一个的子块,然后统计每个子块的直方图信息,并和原图整体的直方图信息进行某种混合,对于彩色图像,为了避免不同通道之间处理后变化过于不协调,还增加了各通道直方图与亮度通道直方图的信息合成,然后对合成后的直方图进行直方图裁剪和均衡化的,获取各子块新的映射直方图,为了避免新的映射表中的数据有较大的奇点或噪音,对映射表的数据进行多点取样,然后使用样条插值算法对取样点进行插值,或者对新的映射表进行一定程度的高斯模糊,得到一张较为平滑的映射表。最后使用类似CLAHE算法中的双线性插值对每个子块之间的映射表进行插值得到新的像素值。本方法计算量小,速度很快,对映射表进行平滑插值或高斯模糊能有效的抑制对比度调整时产生的噪声,防止了信息的过度放大造成图片失真,是一种高效并且效果突出的对比度增强算法。

二、算法过程详解

  1、水平和垂直网格数的确定

  类似于CALHE算法,对网格的合理选取也会对本算法的结果产生重要的影响,过多的网格数会使得计算量显著加大,过少的网格数使得结果趋于接近整体的直方图均衡化,一般情况下,可选择8*8个网格,这里可以通过以下原则来简单的做个优化:图像的亮度的均方差越小,即整幅图像的明暗比较一致,使用较多的网格数,比如8*8,否则使用较少的网格,比如4*4。这是因为当图像明暗较为一致时,各小块的直方图数据差异不会很大,而如果明暗不一致,选择较小的块,各块之间的直方图信息差异可能很大,会造成插值时出现明显的瑕疵。

    2、按规定的网格数划分图像,并获取每块的直方图信息HistB,HistG,HistR。

  3、获取全图的直方图数据HistgramB,HistgramG,HistgramR以及亮度直方图HistgramL。

       其中亮度定义为:  Lightness = (R*19595 + G*38469 + B*7472) >> 16

    4、对子块直方图和全局直方图进行融合,如下代码所示:

HistB[Index] = (HistB[Index] * Adaptation + (100 - Adaptation) * HistgramB[Index]) / 100;
HistG[Index] = (HistG[Index] * Adaptation + (100 - Adaptation) * HistgramG[Index]) / 100;
HistR[Index] = (HistR[Index] * Adaptation + (100 - Adaptation) * HistgramR[Index]) / 100;
HistL[Index] = (HistL[Index] * Adaptation + (100 - Adaptation) * HistgramL[Index]) / 100;

  其中Adaptation为融合因子,其有效范围为[0,100],当取值越小时,全局直方图其主导作用,效果越接近普通的直方图均衡。

  5、对上述融合后的结果再次和亮度直方图进行融合,融合过程如下所示:

HistB[Index] = (HistB[Index] * Correction + (100 - Correction) * HistL[Index]) / 100;
HistG[Index] = (HistG[Index] * Correction + (100 - Correction) * HistL[Index]) / 100;
HistR[Index] = (HistR[Index] * Correction + (100 - Correction) * HistL[Index]) / 100;

 其中Correction为颜色校正因子,其有效范围为[0,100],当取值越大时,各通道之间越独立,效果越接近普通的直方图均衡。

  上述代码中Index表示直方图色阶的索引范围,有效值[0,Bins – 1],Bins为直方图的数量,8位时为256。

  6、按照CALHE的方式对直方图进行裁剪,之后对裁剪的直方图进行均衡化得到每个小块的映射表。

  7、局部均衡化后映射表的平滑。

    1)  将映射表的 Bins取K等份,得到每等份数据对应的映射表值,构成K个二维坐标点序列,亦可以根据直方图的累计数据,把累计数据平均分为K等分,得到K个二维序列点。

    2)根据K个二维坐标点,使用样条插值算法拟合出一条过各个取样点的平滑映射曲线。

    3)在平滑曲线表中取0至于Bins中各色阶对应的插值结果,作为新的映射表结果。

     对于Bins =256的图像,K值建议可取32左右。

    或者另外一种处理方式就是对映射表进行一维方向的均值或者高斯平滑,平滑窗口可选WindowSize = 7左右。

  这种平滑可以带来一定的好处,特别是对于图像变换比较平缓的区域,能够在一定程度上减弱由于增强带来的色块感觉,而且这种方式推广到所有基于直方图增强技术的算法中。

 8、按照CLAHE算法的过程对每个小块进行双线性插值得到最终的增强效果,当然对第一行、第一列、最后一行、最后一列的子块靠近图像边缘的那一半都只使用映射表单个方向的线性插值,而这些子块的其他部分以及其他子块均使用映射表双线性插值获得最终结果。

       如果输入图像是灰度图,由于只有一个通道,则本算法中的Correction在此场景中是可舍弃的。

  整个过程的流程框图如下所示:

     三、测试结果

下图为未经过处理的原始图像,可见原始图中对比度很差,图像的细节信息很少,图像饱和度也很差。右侧是使用本算法后处理的效果图,处理后图像饱和度自然,色彩鲜艳,隐藏在原图右侧的一些不可易见的细节也能清楚的展示出。

                  原始图像

                    Adaptation = 50,Correction = 50, ClipLimit = 20时的效果

              Adaptation = 0,Correction = 50, ClipLimit = 20时的效果

                                        Adaptation = 100,Correction = 50, ClipLimit = 20时的效果

          Adaptation = 50,Correction = 0, ClipLimit = 20时的效果

              Adaptation = 50,Correction = 100, ClipLimit = 20时的效果

     下面作图是另外一副未经处理的图像,这副图像信息较为完整,色彩也较为丰富,但是经过本算法处理后,得到的结果图(右图)则显得更为惊艳和夺目,因此对于正常的图像,本算法也具有较强的实用性。

  特别强调,该算法不适宜处理人脸图像。

       该算法难以使用SSE优化,我在考虑是否还有其他方式优化。速度上1080P的彩图大约30ms可以搞定。

       测试工程的地址:http://files.cnblogs.com/files/Imageshop/SSE_Optimization_Demo.rar

      写博不易,欢迎点赞或者打赏。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏开心的学习之路

主成分分析降维(MNIST数据集)

今天看了用主成分分析简化数据,就顺便用MNIST数据集做了下实验,想直观地看一下效果,并通过完成这个小demo深入理解下原理。 我发现“是什么、能做什么、怎么用...

3835
来自专栏企鹅号快讯

详解各种随机算法

转自:JarvisChu 之前将的算法都是确定的,即对于相同的输入总对应着相同的输出。但实际中也常常用到不确定的算法,比如随机数生成算法,算法的结果是不确定的,...

3709
来自专栏杨熹的专栏

神经网络的前世

小长假来听听 NN 的故事吧。 本文参考:这个地址不错,深入浅出讲深度学习的,推荐感兴趣的朋友看一下。 当你听到深度学习,你想到了什么? ? ? ? Deep...

3505
来自专栏自然语言处理

谈谈学习模型的评估2

评估度量:(其中P:正样本数 N:负样本数 TP:真正例 TN:真负例 FP:假正例 FN:假负例)

702
来自专栏数据派THU

一文读懂支持向量积核函数(附公式)

来源:jerrylead 本文通过多个例子为你介绍支持向量积核函数,助你更好地理解。 核函数(Kernels) 考虑我们最初在“线性回归”中提出的问题,特征是房...

57914
来自专栏机器学习、深度学习

统计学习导论 Chapter3--Linear Regression

Book: An Introduction to Statistical Learning with Applications in R http:...

2277
来自专栏州的先生

Python AI极简入门4:使用机器学习回归模型预测房价

1867
来自专栏专知

【Python实战】无监督学习—聚类、层次聚类、t-SNE,DBSCAN

【导读】本文主要介绍了无监督学习在Python上的实践,围绕着无监督学习,讲述了当前主流的无监督聚类方法:数据准备,聚类,K-Means Python实现,层次...

2203
来自专栏AI研习社

谷歌工程师:聊一聊深度学习的weight initialization

编者按:本文作者夏飞,清华大学计算机软件学士,卡内基梅隆大学人工智能硕士。现为谷歌软件工程师。作者授权雷锋网 AI 研习社发布。 ? █ TLDR (or th...

2735

用Pandas在Python中可视化机器学习数据

为了从机器学习算法中获取最佳结果,你就必须要了解你的数据。

2075

扫码关注云+社区