人群运动--Scene-Independent Group Profiling in Crowd

Scene-Independent Group Profiling in Crowd CVPR2014 http://www.ee.cuhk.edu.hk/~jshao/CUHKcrowd.html https://github.com/amiltonwong/crowd_group_profile

crowd 由 groups 组成,这里我们对 groups 属性进行分析,提出几个可以定量分析的描述算子。 Groups are the primary entities that make up a crowd.

同类之间我们使用 collectiveness, stability, and uniformity 来描述类成员的行为 Intra-group properties, e.g. collectiveness, stability, and uniformity, denote internal coordination among members in the same group.

不同类之间我们使用 conflict 来描述类之间成员的行为 Whilst inter-group properties, e.g. conflict, reflect the external interaction between members in different groups

我们的目标是 characterize and quantify crowd 中的 groups ,对其行为进行分析,人群场景的理解。 一个 group 不仅仅是个体空间上的聚合,同时也是一个动态的单元,展示出一些类内 和类间的属性,可以用这些属性来比较不同的 crowd system

3 Profiling Group Properties 这里我们将一个 group 看作一组个体具有共同的目标和 行为的一致性, with a common goal and collective behaviors 给定一段视频,我们可以将视频中所有的 group 检测出来。 每个group 包含 一个 由 KLT特征点跟踪器检测得到的 跟踪轨迹 tracklets 集合,对于每个 检测到的 group,我们希望可以提出了一些 可视化的描述子用于表示 这个 group的相关属性

3.1. Collective Transition Prior 人群中 group 的精确检测是很有挑战性的工作。这里我们假定场景中人的运动内在属性,我们用一组有限的 Collective Transition (CT) priors 来表征 这些 priors 可以在 检测 group 的同时被发现。有了这些 priors 的约束,我们的group 检测就更 robust,同时我们也可以从这些 priors 里推导出一些 group 的属性

对于每一个 pedestrian group 都有一个特定的 CT prior,可以从视频段中被发现。对于n个跟踪轨迹 tracklets ,我们假定存在 m个 Markov chains,其中 m < n and m is inferred automatically。 每个 Markov chain 有如下形式:

其中 where the continuous observation z evolves by a transition matrix A 。 Gaussian noise v_t ∼ N (0,Q) is assumed between transition We denote Θ = {A,Q,µ,Σ} as the parameters of the chain. A represents the CT prior

下面我们来说说怎么在检测 group的同时发现这些 prior

3.2. Group Detection by Collective Transition 问题的关键是在 视频段中 找到符可以很好拟合 the discovered priors 的 pedestrian groupings The missing data of z k can be inferred with EM

3.3. Group Descriptors for Crowd Scenes

Collectiveness: 描述个体运动和群体运动的吻合度 The collectiveness property indicates the degree of individuals acting as a union in collective motion.

Stability: group 随着时间的变化 其内在拓扑结构是否保持不变, The stability property characterizes whether a group can keep internal topological structure over time. stable members tend to (1) maintain a similar set of nearest neighbors; (2) keep a consistent topological distance with its neighbors through out a clip; and (3)amember is less likely to leave its current nearest neighbor set. 定义了三个 stability descriptors

Uniformity: 个体分布的均匀性 Uniformity is an important property for characterizing homogeneity of a group in terms of spatial distribution. 这里使用图论里的 graph cut , We quantify uniformity by inferring the optimal number (c ∗ ) of graph cuts on the K-NN graph. A higher c ∗ suggest a higher degree of non-uniformity.

Conflict: group 之间的冲突性 The conflict property characterizes interaction/friction between groups when they approach each other.

4 Applications and Experimental Results

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏互联网杂技

计算机科学中最重要的 32 个算法

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutsch...

42012
来自专栏钱塘大数据

大数据最核心的关键技术:32个算法

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutsch...

4239
来自专栏数说工作室

这是一份开光的课程 |《神经网络》中文字幕版(1.3 & 1.4)

《Neutral Network for Machine Learning》(机器学习中的神经网络)系列课程,是深度学习大神 Geoffrey Hinton 毕...

2977
来自专栏新智元

【榜单】计算机科学中最重要的32个算法

【新智元导读】 奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph...

3837
来自专栏华章科技

大数据等最核心的关键技术:32个算法

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutsch...

1052
来自专栏PPV课数据科学社区

【学习】R语言与机器学习(分类算法)logistic回归

由于我们在前面已经讨论过了神经网络的分类问题,如今再从最优化的角度来讨论logistic回归就显得有些不合适了。Logistic回归问题的最优化问题可以表述为:...

2914
来自专栏yw的数据分析

R语言各种假设检验实例整理(常用)

一、正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知。现测得16只元件的寿命如下:           ...

8914
来自专栏小小挖掘机

推荐系统遇上深度学习(四)--多值离散特征的embedding解决方案

在本系列第三篇文章中,在处理DeepFM数据时,由于每一个离散特征只有一个取值,因此我们在处理的过程中,将原始数据处理成了两个文件,一个记录特征的索引,一个记录...

3665
来自专栏WOLFRAM

Wolfram 语言的新功能:增强的求导功能

2158
来自专栏量化投资与机器学习

【年度系列】监督学习标签在股市中的应用(代码+书籍)

由于低信噪比和非平稳的价格分布,预测未来股票价格走势是一件十分困难的事。现在流行的机器学习算法通常会给你带来不怎么满意的结果。

2126

扫码关注云+社区

领取腾讯云代金券