卫星图像中的车辆分析--A Large Contextual Dataset for Classification, Detection and Counting of Cars

A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning ECCV2016 https://gdo-datasci.ucllnl.org/cowc/

本文针对卫星图像中的车辆分析建立了一个新的数据库:Cars Overhead with Context (COWC),然后使用几个 CNN网络对该数据库进行了分析:主要是分类、检测、计数

首先来看看这个新的数据库 Cars Overhead with Context (COWC) 数据库含有 32716个不同的车,来自6个不同的图像库,图像覆盖的区域包括:Toronto Canada [5], Selwyn New Zealand [6], Potsdam [7] and Vaihingen Germany [8], Columbus [9] and Utah [4] United States。 我们的数据库还标记了 58247个有用的负样本,这些样本和正样本比较相似,难以区分,Examples of these are boats, trailers, bushes and A/C units context is included around targets. Context can help tell us something may not be a car (is sitting in a pond?) or confirm it is a car (between other cars, on a road).

我们对输入图像做了一个归一化,不用考虑车辆的尺度问题。 standardized to 15cm per pixel at ground level from their original resolutions. This makes cars range in size from 24 to 48 pixels。 车辆在图像中的尺寸是 24-48像素之间。有灰度图像,也有彩色图像。 quality, appearance or rotation 这些都是不可控的,需要通过算法来解决

图像是像素级标记的,每个车在其中心点标记一个 dot The image set is annotated by single pixel points. All cars in the annotated images have a dot placed on their center

对 occlusions, Large trucks, Vans and pickups 做了相应的约定。

我们从卫星图像中间隔的裁出图像块分别作为训练图像和测试图像

测试场景

这里我们对新的数据库上完成三个任务: 1)two-class classifier,即判断图像块中有无车辆 2) detection and localization 3) vehicle counting 这里没有密度图,走检测计数的路线

4 Classification and Detection 设计了一个新的网络结构

我们从卫星图像中裁出 256 × 256 大小的图像块 a set of 308,988 training patches and 79,447 testing patches

4.1 Does Context Help?

从上面可以看出,context 增加到一定之后,性能就下降了。

4.2 Detection

5 Counting

我们是对卫星图像分块计数的。

5.2 Counting Efficiency

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

如何用70行代码实现深度学习(Java,极易移植)

1292
来自专栏ATYUN订阅号

NVIDIA发布最新数据增强库和图像解码库

由深度学习支持的计算机视觉应用包括复杂的多阶段预处理数据流水线,其中包括计算密集型步骤,如从磁盘加载和提取数据,解码,裁剪和调整大小,颜色和空间变换以及格式转换...

794
来自专栏Duncan's Blog

Twitter用户数据Profiling

传统的数据摘要包括data exploration/data cleansing/data integration.而之后,data management和bi...

663
来自专栏机器之心

专栏 | 递归卷积神经网络在解析和实体识别中的应用

35213
来自专栏量子位

Attention!神经网络中的注意机制到底是什么?

原作:Adam Kosiorek 安妮 编译自 GitHub 量子位 出品 | 公众号 QbitAI 神经网络的注意机制(Attention Mechanism...

3985
来自专栏AI科技评论

开发 | 机器学习之确定最佳聚类数目的10种方法

AI科技评论按,本文作者贝尔塔,原文载于知乎专栏数据分析与可视化,AI科技评论获其授权发布。 在聚类分析的时候确定最佳聚类数目是一个很重要的问题,比如kmean...

34112
来自专栏机器学习原理

我的机器学习微积分篇观点函数从极限到导数导数的应用偏导数从方向导数到梯度

前言: 没想到还能在此生再次用到大学习学习的高数,线性代数和概率论,如果上天给我再来一次的机会,我一定往死了学习这三门课。 观点 与机器学习相关的微积分...

3765
来自专栏素质云笔记

k-means+python︱scikit-learn中的KMeans聚类实现( + MiniBatchKMeans)

之前一直用R,现在开始学python之后就来尝试用Python来实现Kmeans。 之前用R来实现kmeans的博客:笔记︱多种常见聚类模型以及分群质...

1.2K8
来自专栏一心无二用,本人只专注于基础图像算法的实现与优化。

基于模糊集理论的一种图像二值化算法的原理、实现效果及代码

  这是篇很古老的论文中的算法,发表与1994年,是清华大学黄良凯(Liang-kai Huang) 所写,因此国外一些论文里和代码里称之为Huang's fu...

22610
来自专栏大数据挖掘DT机器学习

机器学习算法-决策树C4.5练习

决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应...

3396

扫码关注云+社区