人群密度估计--Learning to Count with CNN Boosting

Learning to Count with CNN Boosting ECCV2016

本文使用CNN来进行人群密度估计,主要有两个改进地方:layered boosting and selective sampling

Boosting deep networks : Boosting 在组合学习中是一种知名的贪婪技术。基本的思想就是对前一个分类器的误差训练一个新的分类器来矫正。广义上,当使用多个弱分类器时,Boosting 是最有效的。当 Boosting 强分类器时,效果通常不是很好。特别是只有少数研究尝试 boosting deep neural networks

Sample Selection: 通常训练CNN网络需要利用大的数据库,很多 data augmentation 数据增强的方法被提出用于增加训练数据,但是并不是所有的训练样本是同等创造的,其对模型的贡献也有所不同。 例如文献【19】提出一个样本选择方法用于选择对模型训练最有用的样本。样本的选择通过作为 cascaded architectures 的一个组成部分。

3 Density counting with CNNs 根据图像目标的位置,一般使用一个 normalized 2D Gaussian kernel 生成真值密度图,对于行人我们使用了一个 specific smoothing kernel 人群密度图:

有了密度图,计数就可以通过空间积分实现 spatial integration。 这里有一点需要指出,上面的定义得到的计数和真值总数有一定误差,这个误差主要由那些位于图像边界的物体造成的。但是在大多数应用场合,这个误差可以被忽略不计。

上图分别对应 cell counting crowd counting 两个问题

The proposed boosting scheme

fine-tune the weights of the entire network by employing backpropagation to the resulting structure.

5 Sample Selection

这里我们选择有效样本的基准是根据目前系统的误差,误差太小的样本或误差太大的样本,我们都认为样本的质量越差,误差太小对应样本太简单,误差太大对应样本可能被误标记 samples with either high or low errors are deemed to be of low quality

6 Experiments 细胞计数问题: microscopy dataset

Crowd counting benchmarks UCSD crowd dataset

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

博客 | 新的网络优化方法:随机权值平均

在本文中,数据科学研究人员 Max Pechyonkin 讨论了最近两篇有趣的论文,它们提供了一种简单的方法,通过用一种巧妙的集成方式来提高任何给定神经网络的性...

692
来自专栏MyBlog

Energy-efficient Amortized Inference with Cascaded Deep Classifiers论文笔记

深度神经网络在许多AI任务中取得了卓越的成功, 但是通常会造成高的计算量和能量耗费, 对于某些能量有约束的应用, 例如移动传感器等.

856
来自专栏AI研习社

图像分类比赛中,你可以用如下方案举一反三

雷锋网 AI 研习社按,在本文中,作者将向大家介绍其在 Kaggle 植物幼苗分类大赛(https://www.kaggle.com/c/plant-seedl...

823
来自专栏鸿的学习笔记

神经网络结构(上)

深度神经网络和深度学习是很强大和流行的算法。他们的成功很大程度上在于神经网络架构的精心设计。所以我想重温过去几年深度学习的神经网络设计的历史。

672
来自专栏机器之心

学界 | 带引导的进化策略:摆脱随机搜索中维数爆炸的魔咒

机器学习模型的优化常常涉及最小化代价函数,其中代价关于模型参数的梯度是已知的。当梯度信息可用时,梯度下降和变量等一阶方法因其易于实现、存储效率高(通常需要与参数...

661
来自专栏AI研习社

如何让你的深度神经网络跑得更快

由于内存和计算能力有限,随着网络变得越来越深,对包括移动设备在内的有严格时延要求的有限资源平台而言,神经网络压缩就成为一个关键问题。就降低性能和加快深度网络之间...

953
来自专栏计算机视觉战队

哇~这么Deep且又轻量的Network,实时目标检测

最近挺对不住关注“计算机视觉战队”平台的小伙伴,有段时间没有给大家分享比较硬比较充实的“干货”了,在此向大家表示抱歉,今天抽空之余,想和大家说说目标的实时检测。

722
来自专栏我的技术专栏

浅谈 GPU图形固定渲染管线

图形渲染管道被认为是实时图形渲染的核心,简称为管道。管道的主要功能是由给定的虚拟摄像机、三维物体、灯源、光照模型、纹理贴图或其他来产生或渲染一个二维图像。由此可...

1897
来自专栏媒矿工厂

基于双流编码-解码深度网络的视频对象分割算法简介

背景介绍 视频对象分割(Video Object Segmentation),目的是将视频段中的物体连续地“抠”出来以得到视频每一帧的前景、背景分割结果。分割得...

3583
来自专栏大数据文摘

机器都会学习了,你的神经网络还跑不动?来看看这些建议

在很多机器学习的实验室中,机器已经进行了上万小时的训练。在这个过程中,研究者们往往会走很多弯路,也会修复很多bug,但可以肯定的是,在机器学习的研究过程中,学到...

910

扫码关注云+社区