利用Flume将MySQL表数据准实时抽取到HDFS

一、为什么要用到Flume

        在以前搭建HAWQ数据仓库实验环境时,我使用Sqoop抽取从MySQL数据库增量抽取数据到HDFS,然后用HAWQ的外部表进行访问。这种方式只需要很少量的配置即可完成数据抽取任务,但缺点同样明显,那就是实时性。Sqoop使用MapReduce读写数据,而MapReduce是为了批处理场景设计的,目标是大吞吐量,并不太关心低延时问题。就像实验中所做的,每天定时增量抽取数据一次。

        Flume是一个海量日志采集、聚合和传输的系统,支持在日志系统中定制各类数据发送方,用于收集数据。同时,Flume提供对数据进行简单处理,并写到各种数据接受方的能力。Flume以流方式处理数据,可作为代理持续运行。当新的数据可用时,Flume能够立即获取数据并输出至目标,这样就可以在很大程度上解决实时性问题。

        Flume是最初只是一个日志收集器,但随着flume-ng-sql-source插件的出现,使得Flume从关系数据库采集数据成为可能。下面简单介绍Flume,并详细说明如何配置Flume将MySQL表数据准实时抽取到HDFS。

二、Flume简介

1. Flume的概念

        Flume是分布式的日志收集系统,它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到HDFS,简单来说flume就是收集日志的,其架构如图1所示。

图1

2. Event的概念 

        在这里有必要先介绍一下Flume中event的相关概念:Flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,Flume再删除自己缓存的数据。 

       在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?Event将传输的数据进行封装,是Flume传输数据的基本单位,如果是文本文件,通常是一行记录。Event也是事务的基本单位。Event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。Event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。

3. Flume架构介绍 

        Flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent。Agent本身是一个Java进程,运行在日志收集节点——所谓日志收集节点就是服务器节点。 Agent里面包含3个核心的组件:source、channel和sink,类似生产者、仓库、消费者的架构。 

  • Source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。 
  • Channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。 
  • Sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、Hbase、solr、自定义。 

4. Flume的运行机制 

        Flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据输入的source,一个是数据输出的sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方,例如HDFS等。注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。 

三、安装Hadoop和Flume

        我的实验在HDP 2.5.0上进行,HDP安装中包含Flume,只要配置Flume服务即可。HDP的安装步骤参见“HAWQ技术解析(二) —— 安装部署

四、配置与测试

1. 建立MySQL数据库表

        建立测试表并添加数据。

use test;

create table  wlslog  
(id         int not null,
 time_stamp varchar(40),
 category   varchar(40),
 type       varchar(40),
 servername varchar(40),
 code       varchar(40),
 msg        varchar(40),
 primary key ( id )
);

insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(1,'apr-8-2014-7:06:16-pm-pdt','notice','weblogicserver','adminserver','bea-000365','server state changed to standby');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(2,'apr-8-2014-7:06:17-pm-pdt','notice','weblogicserver','adminserver','bea-000365','server state changed to starting');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(3,'apr-8-2014-7:06:18-pm-pdt','notice','weblogicserver','adminserver','bea-000365','server state changed to admin');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(4,'apr-8-2014-7:06:19-pm-pdt','notice','weblogicserver','adminserver','bea-000365','server state changed to resuming');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(5,'apr-8-2014-7:06:20-pm-pdt','notice','weblogicserver','adminserver','bea-000361','started weblogic adminserver');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(6,'apr-8-2014-7:06:21-pm-pdt','notice','weblogicserver','adminserver','bea-000365','server state changed to running');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(7,'apr-8-2014-7:06:22-pm-pdt','notice','weblogicserver','adminserver','bea-000360','server started in running mode');
commit;

2. 建立相关目录与文件

(1)创建本地状态文件

mkdir -p /var/lib/flume
cd /var/lib/flume
touch sql-source.status
chmod -R 777 /var/lib/flume

(2)建立HDFS目标目录

hdfs dfs -mkdir -p /flume/mysql
hdfs dfs -chmod -R 777 /flume/mysql

3. 准备JAR包

        从http://book2s.com/java/jar/f/flume-ng-sql-source/download-flume-ng-sql-source-1.3.7.html下载flume-ng-sql-source-1.3.7.jar文件,并复制到Flume库目录。

cp flume-ng-sql-source-1.3.7.jar /usr/hdp/current/flume-server/lib/

        将MySQL JDBC驱动JAR包也复制到Flume库目录。

cp mysql-connector-java-5.1.17.jar /usr/hdp/current/flume-server/lib/mysql-connector-java.jar

4. 建立HAWQ外部表

create external table ext_wlslog
(id         int,
 time_stamp varchar(40),
 category   varchar(40),
 type       varchar(40),
 servername varchar(40),
 code       varchar(40),
 msg        varchar(40)
) location ('pxf://mycluster/flume/mysql?profile=hdfstextmulti') format 'csv' (quote=e'"'); 

5. 配置Flume

        在Ambari -> Flume -> Configs -> flume.conf中配置如下属性:

agent.channels.ch1.type = memory
agent.sources.sql-source.channels = ch1
agent.channels = ch1
agent.sinks = HDFS

agent.sources = sql-source
agent.sources.sql-source.type = org.keedio.flume.source.SQLSource

agent.sources.sql-source.connection.url = jdbc:mysql://172.16.1.127:3306/test
agent.sources.sql-source.user = root
agent.sources.sql-source.password = 123456
agent.sources.sql-source.table = wlslog
agent.sources.sql-source.columns.to.select = *

agent.sources.sql-source.incremental.column.name = id
agent.sources.sql-source.incremental.value = 0

agent.sources.sql-source.run.query.delay=5000

agent.sources.sql-source.status.file.path = /var/lib/flume
agent.sources.sql-source.status.file.name = sql-source.status

agent.sinks.HDFS.channel = ch1
agent.sinks.HDFS.type = hdfs
agent.sinks.HDFS.hdfs.path = hdfs://mycluster/flume/mysql
agent.sinks.HDFS.hdfs.fileType = DataStream
agent.sinks.HDFS.hdfs.writeFormat = Text
agent.sinks.HDFS.hdfs.rollSize = 268435456
agent.sinks.HDFS.hdfs.rollInterval = 0
agent.sinks.HDFS.hdfs.rollCount = 0

        Flume在flume.conf文件中指定Source、Channel和Sink相关的配置,各属性描述如表1所示。

属性

描述

agent.channels.ch1.type

Agent的channel类型

agent.sources.sql-source.channels

Source对应的channel名称

agent.channels

Channel名称

agent.sinks

Sink名称

agent.sources

Source名称

agent.sources.sql-source.type

Source类型

agent.sources.sql-source.connection.url

数据库URL

agent.sources.sql-source.user

数据库用户名

agent.sources.sql-source.password

数据库密码

agent.sources.sql-source.table

数据库表名

agent.sources.sql-source.columns.to.select

查询的列

agent.sources.sql-source.incremental.column.name

增量列名

agent.sources.sql-source.incremental.value

增量初始值

agent.sources.sql-source.run.query.delay

发起查询的时间间隔,单位是毫秒

agent.sources.sql-source.status.file.path

状态文件路径

agent.sources.sql-source.status.file.name

状态文件名称

agent.sinks.HDFS.channel

Sink对应的channel名称

agent.sinks.HDFS.type

Sink类型

agent.sinks.HDFS.hdfs.path

Sink路径

agent.sinks.HDFS.hdfs.fileType

流数据的文件类型

agent.sinks.HDFS.hdfs.writeFormat

数据写入格式

agent.sinks.HDFS.hdfs.rollSize

目标文件轮转大小,单位是字节

agent.sinks.HDFS.hdfs.rollInterval

hdfs sink间隔多长将临时文件滚动成最终目标文件,单位是秒;如果设置成0,则表示不根据时间来滚动文件

agent.sinks.HDFS.hdfs.rollCount

当events数据达到该数量时候,将临时文件滚动成目标文件;如果设置成0,则表示不根据events数据来滚动文件

表1

6. 运行Flume代理

        保存上一步的设置,然后重启Flume服务,如图2所示。

图2

        重启后,状态文件已经记录了将最新的id值7,如图3所示。

图3

        查看目标路径,生成了一个临时文件,其中有7条记录,如图4所示。

图4

        查询HAWQ外部表,结果也有全部7条数据,如图5所示。

图5

        至此,初始数据抽取已经完成。

7. 测试准实时增量抽取

        在源表中新增id为8、9、10的三条记录。

use test;
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(8,'apr-8-2014-7:06:22-pm-pdt','notice','weblogicserver','adminserver','bea-000360','server started in running mode');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(9,'apr-8-2014-7:06:22-pm-pdt','notice','weblogicserver','adminserver','bea-000360','server started in running mode');
insert into wlslog(id,time_stamp,category,type,servername,code,msg) values(10,'apr-8-2014-7:06:22-pm-pdt','notice','weblogicserver','adminserver','bea-000360','server started in running mode');
commit;

        5秒之后查询HAWQ外部表,从图6可以看到,已经查询出全部10条数据,准实时增量抽取成功。

图6

五、方案优缺点

        利用Flume采集关系数据库表数据最大的优点是配置简单,不用编程。相比tungsten-replicator的复杂性,Flume只要在flume.conf文件中配置source、channel及sink的相关属性,已经没什么难度了。而与现在很火的canal比较,虽然不够灵活,但毕竟一行代码也不用写。再有该方案采用普通SQL轮询的方式实现,具有通用性,适用于所有关系库数据源。

        这种方案的缺点与其优点一样突出,主要体现在以下几方面。

  • 在源库上执行了查询,具有入侵性。
  • 通过轮询的方式实现增量,只能做到准实时,而且轮询间隔越短,对源库的影响越大。
  • 只能识别新增数据,检测不到删除与更新。
  • 要求源库必须有用于表示增量的字段。

        即便有诸多局限,但用Flume抽取关系库数据的方案还是有一定的价值,特别是在要求快速部署、简化编程,又能满足需求的应用场景,对传统的Sqoop方式也不失为一种有效的补充。

参考:

Flume架构以及应用介绍

Streaming MySQL Database Table Data to HDFS with Flume

how to read data from oracle using FLUME to kafka broker

https://github.com/keedio/flume-ng-sql-source

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏鸿的学习笔记

YARN--大数据的资源管理器

最初,Hadoop主要限于范例MapReduce,其中资源管理由JobTracker和TaskTacker完成。JobTracker将MapReduce任务传播...

742
来自专栏奇点大数据

提高hadoop的可靠性(下)

在Hadoop集群中,Namenode的可用性直接影响了Hadoop整个集群的可用性,目前有很多可选方案,基本上以NFS+zookeeper实现,...

2707
来自专栏散尽浮华

Mesos+Zookeeper+Marathon的Docker管理平台部署记录(1)

随着"互联网+"时代的业务增长、变化速度及大规模计算的需求,廉价的、高可扩展的分布式x86集群已成为标准解决方案,如Google已经在几千万台服务器上部署分布式...

2385
来自专栏个人分享

SparkConf加载与SparkContext创建(源码阅读四)

  sparkContext创建还没完呢,紧接着前两天,我们继续探索。。作死。。。

601
来自专栏数据派THU

独家 | 一文读懂Hadoop(二)HDFS(上)

随着全球经济的不断发展,大数据时代早已悄悄到来,而Hadoop又是大数据环境的基础,想入门大数据行业首先需要了解Hadoop的知识。2017年年初apache发...

3638
来自专栏机器学习算法与Python学习

大数据HDFS技术干货分享

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 1 HDFS前言 设计思想 分而治之...

4528
来自专栏数据派THU

独家 | 一文读懂Hadoop(二)HDFS(下)

5.1 用户命令 hadoop集群用户的常用命令。 5.1.1 classpath 打印获取Hadoop jar和所需库所需的类路径。如果无参数调用,则打印由命...

2706
来自专栏xingoo, 一个梦想做发明家的程序员

Spark监控官方文档学习笔记

任务的监控和使用 有几种方式监控spark应用:Web UI,指标和外部方法 Web接口 每个SparkContext都会启动一个web UI,默认是40...

2489
来自专栏闵开慧

hadoop源码解析1 - hadoop中各工程包依赖关系

1 hadoop中各工程包依赖简述     Google的核心竞争技术是它的计算平台。Google的大牛们用了下面5篇文章,介绍了它们的计算设施。     G...

2895
来自专栏我的小碗汤

爬虫性能分析及优化

我们可以通过网络利用率看一下,我们用任务管理器中的性能分析窗口可以看到下载速率大概是保持在了200kbps左右,这可以说是相当慢了。

843

扫码关注云+社区