统计学习导论 Chapter4--Classification

Book: An Introduction to Statistical Learning with Applications in R http://www-bcf.usc.edu/~gareth/ISL/

这一章主要介绍了一些分类问题,当输出响应变量是 qualitative,例如 eye color is qualitative, taking on values blue, brown, or green. Often qualitative variables are referred to as categorical

本章主要关注 三个经典的分类方法:logistic regression, linear discriminant analysis, and K-nearest neighbors

4.2 Why Not Linear Regression? 为什么不用线性回归方法来处理分类问题了? 主要是线性回归方法的输出不能和分类问题的类别建立有效的对应关系。 1)当我们改变输出类别的标记数,就会得到不同的线性回归模型,下面两个 Y 就会得到不同的回归模型

2) 如果我们使用 1;2;3 表示三个类别,使用线性回归方法的输出是 100,我们不知道其对应哪个类别

4.3 Logistic Regression 我们该如何对 p(X) = Pr(Y = 1|X) 和 X 这两个变量的关系进行建模了?(这里我们使用 0/1 表示 输出类别),在 Section 4.2 我们说使用一个线性回归模型来表示这些概率:

我们使用这个线性模型得到的结果有时会超出【0~1】的范围,These predictions are not sensible,所以我们需要避免这个问题,我们应该使用一个函数来建模 p(X),其对任何X 的输出都会在 0和1 之间,很多函数都可以满足这个要求。对于logistic regression 来说,我们使用 logistic function

为了拟合上述模型,我们使用 maximum likelihood 方法,后面我们会介绍该方法。

接着介绍了两个概念 odds 和 log-odds or logit odds:

log-odds or logit:

4.3.2 Estimating the Regression Coefficients 公式(4.2)中的参数 β0 和 β1 是未知的,必须通过训练数据来估计。这里我们介绍 maximum likelihood 方法,最大似然方法用于 logistic regression model 拟合背后的 intuition 是:我们寻找这样的 β0 和 β1,它们能够使得我们观测到每个数据的 predicted probability 尽可能的符合default status。就是对每个观测的数据预测的类别都很接近真值,用估计的 β0 和 β1 对应的模型可能很好的拟合所有的训练数据。这个intuition 可以使用一个似然函数表示 likelihood function

Maximum likelihood 是一种常用的拟合非线性模型的方法,在linear regression setting,least squares 方法可以看作 maximum likelihood 的一个特殊情况。模型的拟合可以通过统计软件包里的相关函数很容易实现,所以我们不需要关注其拟合细节。

4.3.3 Making Predictions we predict that the default probability for an individual with a balance of $1,000 is

4.3.4 Multiple Logistic Regression

4.3.5 Logistic Regression for > 2 Response Classes 多类别分类我们也可以使用 逻辑回归方法来处理,但是实际中更常用的方法是 Linear Discriminant Analysis,这就是下面我们要介绍的。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏程序生活

机器学习(三)使用Python和R语言从头开始理解和编写神经网络介绍目录神经网络背后的直观知识多层感知器及其基础知识什么是激活函数?前向传播,反向传播和训练次数(epochs)多层感知器全批量梯度下降

本篇文章是原文的翻译过来的,自己在学习和阅读之后觉得文章非常不错,文章结构清晰,由浅入深、从理论到代码实现,最终将神经网络的概念和工作流程呈现出来。自己将其翻译...

4157
来自专栏企鹅号快讯

机器学习三人行-千变万化的组合算法

本文我们在决策树的基础上,更进一步的讨论由常用机器学习算法进行组合的集成算法,对集成算法最直接的理解就是三个臭皮匠赛过诸葛亮,通常我们已经建立了一些预测效果较好...

2086
来自专栏深度学习与计算机视觉

如何理解卷积神经网络中的1*1卷积

我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5...

17410
来自专栏云时之间

深度学习与神经网络:正则化小栗子

1324
来自专栏杨熹的专栏

图解RNN

参考视频 RNN-Recurrent Neural Networks ---- 本文结构: 什么是 Recurrent Neural Networks ? R...

3275
来自专栏ATYUN订阅号

【学术】一文教你如何正确利用kNN进行机器学习

AiTechYun 编辑:xiaoshan k最近邻算法(kNN)是机器学习中最简单的分类方法之一,并且是入门机器学习和分类的好方法。它基本上是通过在训练数据中...

2585
来自专栏企鹅号快讯

从零学习:从Python和R理解和编码神经网络

作者:SUNIL RAY 编译:Bot 编者按:当你面对一个新概念时,你会怎么学习和实践它?是耗费大量时间学习整个理论,掌握背后的算法、数学、假设、局限再亲身实...

34510
来自专栏程序生活

机器学习(五)使用Python和R语言从头开始理解和编写神经网络介绍目录神经网络背后的直观知识多层感知器及其基础知识什么是激活函数?前向传播,反向传播和训练次数(epochs)多层感知器全批量梯度下降

本篇文章是原文的翻译过来的,自己在学习和阅读之后觉得文章非常不错,文章结构清晰,由浅入深、从理论到代码实现,最终将神经网络的概念和工作流程呈现出来。自己将其...

3585
来自专栏奇点大数据

卷积神经网络对图片分类-下

接上篇:卷积神经网络对图片分类-中 9 ReLU(Rectified Linear Units) Layers 在每个卷积层之后,会马上进入一个激励层,调用一种...

27512
来自专栏King_3的技术专栏

超参数搜索——网格搜索和随机搜索

我们在搜索超参数的时候,如果超参数个数较少(三四个或者更少),那么我们可以采用网格搜素,一种穷尽式的搜索方法。

803

扫码关注云+社区