前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >第1阶段——uboot分析之启动函数bootm命令 (9)

第1阶段——uboot分析之启动函数bootm命令 (9)

作者头像
诺谦
发布2018-01-03 16:33:23
1.1K0
发布2018-01-03 16:33:23
举报
文章被收录于专栏:Linux驱动Linux驱动Linux驱动

本节主要学习: 详细分析UBOOT中"bootcmd=nand read.jffs2 0x30007FC0 kernel;bootm 0x30007FC0" 中怎么实现bootm命令启动内核.

其中bootm要做的事情: a 读取头部,把内核拷贝到合适的地方(0X30008000) b 在do_boom_linux()中把参数给内核准备好,并告诉内核参数的首地址 c 在do_boom_linux()中最后使用theKernel () 引导内核. {注意:当在cmd_bootm.C中没有定义宏CONFIG_PPC时, 系统使用./lib_arm/armlinux.C下的do_bootm_linux()函数(本uboot使用的是这个函数). 若定义了该宏,系统会使用./common/cmd_bootm.C下的do_bootm_linux()函数.} 1. bootm 0x30007FC0 为什么这里是从0x30007FC0启动?

因为Flash上存的内核格式是:uImage   而uiamge由: 头部(header) + 真正的内核 组成 在下面1.1节中讲到头部占用了64B字节,用来存放各个参数变量,所以真正的内核加载地址是在: 真正的内核开始地址=0x30007FC0+64=0X30008000,所以bootm启动内核地址刚好位于nand命令加载的地址后面,不需要移动

1.1 uImage头部结构体分析 头部:由结构体image_header_t定义,该结构体大小为64B,位于./include/image.h

typedef struct image_header {
uint32_t    ih_magic;    /* Image Header Magic Number(镜像头部幻数,为#define IH_MAGIC    0x27051956    )    */ //幻数:用来标记文件的格式 
uint32_t    ih_hcrc;    /* Image Header CRC Checksum(镜像头部CRC校验码)    */
uint32_t    ih_time;    /* Image Creation Timestamp(镜像创建时间戳)*/
uint32_t    ih_size;    /* Image Data Size(镜像数据大小(不算头部) )    */
uint32_t    ih_load;    /* Data    Load Address(镜像数据将要载入的内存地址)    */ 
uint32_t    ih_ep;      /* Entry Point Address(镜像入口地址)    */
uint32_t    ih_dcrc;    /* Image Data CRC Checksum(镜像数据CRC校验码)    */
uint8_t    ih_os;       /* Operating System(操作系统类型)    */
uint8_t    ih_arch;     /* CPU architecture(CPU架构)    */
uint8_t    ih_type;     /* Image Type(镜像类型)    */
uint8_t    ih_comp;     /* Compression Type(压缩类型)    */
uint8_t    ih_name[IH_NMLEN];    /* Image Name(镜像名字ih_name,共32字节 #define IH_NMLEN    32)    */
} image_header_t;

1.2 bootm命令之do_bootm函数分析 (bootm命令位于./common/cmd_bootm.c,其中nand命令执行时调用的是do_bootm()函数)

int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
ulong    iflag;
ulong    addr;
ulong    data, len, checksum;
ulong *len_ptr;
uint    unc_len = CFG_BOOTM_LEN; 
int    i, verify;
char    *name, *s;
int    (*appl)(int, char *[]);
image_header_t *hdr = &header; //定义头部结构体指针hdr等于header的地址.

s = getenv ("verify"); //读取uboot环境变量verify
verify = (s && (*s == 'n')) ? 0 : 1; //如果verify==n,局部变量verify=0,否则verify=1.

if (argc < 2) { //如果argc==1(只输入了bootm),则使用缺省加载地址load_addr 
addr = load_addr;
} else { //否则使用argv[1](0x30007FC0)为加载地址
addr = simple_strtoul(argv[1], NULL, 16);
}
SHOW_BOOT_PROGRESS (1);
printf ("## Booting image at %08lx ...\n", addr); //打印"## Booting image at 0x30007FC0 ...\n" 

#ifdef CONFIG_HAS_DATAFLASH
if (addr_dataflash(addr)){
read_dataflash(addr, sizeof(image_header_t), (char *)&header);
} else
#endif
memmove (&header, (char *)addr, sizeof(image_header_t)); 
//在加载地址中前64B大小的头部结构体提取到image_header_t结构变量header中,为下面的分析校验做准备

if (ntohl(hdr->ih_magic) != IH_MAGIC) //判断幻数Magic number 是否匹配,不匹配说明下载过程中错误.
{
...
} else
#endif    /* __I386__ */
{
puts ("Bad Magic Number\n");
SHOW_BOOT_PROGRESS (-1);
return 1;
}
}
SHOW_BOOT_PROGRESS (2);

data = (ulong)&header; 
len = sizeof(image_header_t);

checksum = ntohl(hdr->ih_hcrc);
hdr->ih_hcrc = 0;

if (crc32 (0, (uchar *)data    , len) != checksum) { //判断校验和
puts ("Bad Header Checksum\n");
SHOW_BOOT_PROGRESS (-2);
return 1;
}
SHOW_BOOT_PROGRESS (3);

....

#if defined(__PPC__) //判断体系结构,校验CPU类型是否正确
if (hdr->ih_arch != IH_CPU_PPC)
#elif defined(__ARM__)
if (hdr->ih_arch != IH_CPU_ARM)
#elif defined(__I386__)
if (hdr->ih_arch != IH_CPU_I386)
#elif defined(__mips__)
if (hdr->ih_arch != IH_CPU_MIPS)
#elif defined(__nios__)
if (hdr->ih_arch != IH_CPU_NIOS)
#elif defined(__M68K__)
if (hdr->ih_arch != IH_CPU_M68K)
#elif defined(__microblaze__)
if (hdr->ih_arch != IH_CPU_MICROBLAZE)
#elif defined(__nios2__)
if (hdr->ih_arch != IH_CPU_NIOS2)
#elif defined(__blackfin__)
if (hdr->ih_arch != IH_CPU_BLACKFIN)
#elif defined(__avr32__)
if (hdr->ih_arch != IH_CPU_AVR32)
#else
# error Unknown CPU type //没有找到CPU类型
#endif
...
switch (hdr->ih_type) //判断镜像image类型
{ ...}

switch (hdr->ih_comp) //根据镜像压缩(compression)类型把内核镜像解压到指定的地址
{
case IH_COMP_NONE: //使用的是没有压缩,执行该段case
if(ntohl(hdr->ih_load) == data) //该data内核地址刚好位于ih_load加载地址,不需要移动,直接运行
{ 
printf (" XIP %s ... ", name); //打印
} 
else //else执行内核移动,将内核data地址移到 hdr->ih_load (加载地址)中
{ ...
memmove ((void *) ntohl(hdr->ih_load), (uchar *)data, len); 
...}    
break;
case IH_COMP_GZIP:
....
}
...
switch (hdr->ih_os) //根据不同的操作系统类型来启动内核
{ 
case IH_OS_LINUX: //LINUX系统,执行该段case
#ifdef CONFIG_SILENT_CONSOLE
fixup_silent_linux();
#endif
do_bootm_linux(cmdtp, flag, argc, argv,addr, len_ptr, verify); //执行do_bootm_linux()函数启动内核
break;
case IH_OS_NETBSD: //NETBSD系统 
....
....
}

do_bootm()函数若执行无误,最终会执行do_bootm_linux()函数

1.3 bootm命令之do_bootm_linux函数分析 进入do_bootm_linux()函数(位于./lib_arm/armlinux.C) :

void do_bootm_linux (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[],ulong addr, ulong *len_ptr, int verify) 
{
void (*theKernel)(int zero, int arch, uint params); //定义一个函数指针theKernel
... ...
theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep); //1.设置theKernel地址=ih_ep镜像入口地址,用于后面启动内核
... ...
char *commandline = getenv ("bootargs"); 
//commandline指向"bootargs"命令环境参数. 用于后面setup_commandline_tag的形参
//在本uboot界面中输入print指令就能得到"bootargs=noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0" 
//root=/dev/mtdblock3:表示根文件系统root位于第4个flsh分区(mtdblock3), mtdblock0=bootloader,mtd1=参数,mtd2=内核 
//init=/linuxrc:指定内核启动后运行的第一个脚本是当前目录下linuxrc脚本
//console=ttySAC0:指定选择串口0(ttySAC0)来打印信息、
... ...

/*2.设置tag 参数*/ 
setup_start_tag (bd);           //在0X30000100地址保存start_tag数据,tag:用于u-boot给Linux kernel传递参数数据,因为内核启动后不能使用uboot了.
setup_memory_tags (bd);                   //保存memory_tag数据,让LINUX知道内存多大
setup_commandline_tag (bd, commandline); //保存commandline_tag数据
setup_end_tag (bd);                      //初始化tag结构体结束
....
cleanup_before_linux ();                   //3.启动内核之前需要做一些清理工作,禁止中断,关闭cache

theKernel (0, bd->bi_arch_number, bd->bi_boot_params); 
//4.通过ih_ep镜像入口地址启动内核,然后从0X30000010处读取tag参数,
//其中"bd->bi_arch_number"参数是向内核传递的机器ID,用于内核确定机器ID是否正确,    bd->bi_arch_number是在start_armboot函数中board_init里赋了值

}

从以上代码中可以看出启动内核之前主要执行了两步骤:

1.4   通过setup_...._tag函数为内核准备参数,

1.5  进入cleanup_before_linux函数清除中断和cache

1.4 tag参数函数分析: 1.4.1 d setup_start_tag (bd)函数分析如下: (在上面的tag结构体的首地址为什么在0X30000100?) 通过搜索"setup_start_tag"得到该函数位于./lib_arm/armlinux.c中:

static void setup_start_tag (bd_t *bd)
{
params = (struct tag *) bd->bi_boot_params; 

//初始化(struct tag *)型全局变量params= bd->bi_boot_params=0x30000100,
// 之后的memory_tag和commandline_tag等tag数据都保存在params后面的偏移地址. 
params->hdr.tag = ATAG_CORE; //存放srat常量:params->hdr.tag = ATAG_CORE=0x54410001, tag表示tag类型的常量。 
params->hdr.size = tag_size (tag_core); //存放srat长度:params->hdr.size=5, size表示start_tag的结构大小。
//因为tag_size (tag_core)=((sizeof(struct tag_header) + sizeof(struct tag_core)) >> 2)
//其中tag_header结构体里有2个4字节成员(size,tag),
//tag_core结构体里有3个4字节成员(flags,pagesize,rootdev)
//所以tag_size (tag_core)=(2*4+3*4)>>2=5; 单位是4字节
params->u.core.flags = 0;    //存放params的(tag_core型)结构体成员u.core.flags=0
params->u.core.pagesize = 0;//存放params的(tag_core型)结构体成员u.core.pagesize=0
params->u.core.rootdev = 0;//存放params的(tag_core型)结构体成员u.core.rootdev=0

params = tag_next (params); //params指向下一个tag(setup_memory_tags),params=(0x30000100+size*4)=0x30000114 
} 

通过上面代码,最终内存分布为:

1.4.2 do_bootm_linux函数中setup_memory_tags(bd)函数分析如下: 

static void setup_memory_tags (bd_t *bd) 
{
int i;

for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
params->hdr.tag = ATAG_MEM; //存放内存tag常量: params->hdr.tag =ATAG_MEM= 0x54410002 
params->hdr.size = tag_size (tag_mem32); //存放内存长度:params->hdr.size =4 (len+ATAG_MEM+u.mem.size+u.mem.start)

params->u.mem.start = bd->bi_dram[i].start; 
//存放内存(sdram)的的首地址,
// bd->bi_dram[i].start在start_armboot()函数中init_sequence->dram_init结构函数成员里被复制:
// gd->bd->bi_dram[0].start = PHYS_SDRAM_1;其中"PHYS_SDRAM_1"在./include/configs/100ask24x0.h中定义为0X30000000(bank6首地址)
//所以,这里存放内存(sdram)首地址:params->u.mem.start =0X30000000; 
params->u.mem.size = bd->bi_dram[i].size;
//同上,gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;"PHYS_SDRAM_1_SIZE"被定义为0X04000000(64Mb)
//所以,这里存放内存(sdram)长度: params->u.mem.size=0X04000000; 
params = tag_next (params); //params指向下一个tag(setup_commandline_tag),params=(0x30000114+size*4)=0x30000124 
}
}

通过上面代码,最终内存分布为:

1.4.3 do_bootm_linux函数中setup_commandline_tag(bd)函数分析如下:

static void setup_commandline_tag (bd_t *bd, char *commandline) //commandline:指向"bootargs"命令环境参数
{
char *p;

if (!commandline) // 判断bootargs是否为空,
return;


for (p = commandline; *p == ' '; p++); //去掉空格

if (*p == '\0') //判断*p是否为空
return;

params->hdr.tag = ATAG_CMDLINE; //存放命令行产量: params->hdr.tag =ATAG_MEM= 0x54410009 
params->hdr.size =
(sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2; //存放命令行长度 params->hdr.size 
/* 其中 strlen (p) + 1 + 4: +1表示添加结束符'/0' */
/* +4 表示向上取整,比如当len=(4,5,6,7)时,size=(len+4)>>2=2; 实现4字节对齐 */

strcpy (params->u.cmdline.cmdline, p); 
//存放命令行参数:params->u.cmdline.cmdline=boottargs=noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0

params = tag_next (params); //params指向下一个tag(setup_end_tag)
}

通过上面代码,最终内存分布为:

1.4.4 do_bootm_linux函数中setup_end_tag (bd)函数分析如下:

static void setup_end_tag (bd_t *bd)  
{
params->hdr.tag = ATAG_NONE; //params->hdr.tag =ATAG_NONE=0
params->hdr.size = 0; //size=0
}

通过上面代码,最终内存分布为:

1.5  进入cleanup_before_linux函数清除中断和cache(./arm920t/cpu/cpu.c):

int cleanup_before_linux (void)
{
unsigned long i;

disable_interrupts (); //禁止中断
/* turn off I/D-cache */ //关闭 指令Icache和数据Dcache
asm ("mrc p15, 0, %0, c1, c0, 0":"=r" (i));
i &= ~(C1_DC | C1_IC);
asm ("mcr p15, 0, %0, c1, c0, 0": :"r" (i));

/* flush I/D-cache */
i = 0;
asm ("mcr p15, 0, %0, c7, c7, 0": :"r" (i));

return (0);
}
本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-08-09 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档