人群密度估计--Learning a perspective-embedded deconvolution network for crowd counting

Learning a perspective-embedded deconvolution network for crowd counting 没有找到代码

本文在人群密度估计这个问题上的创新点: fuse the perspective into a deconvolution network

首先看看 Perspective Perspective is an inherent property of most surveillance scenes

所谓的 Perspective 就是同一个尺寸的物体,在图像中位置的不同其在图像中的尺寸也是不一样的。距离相机越远其尺寸越小,距离相机越近其尺寸越大。在人群图像中的表现就是离相机远的人其在图像中就显得比较小,离相机比较近的人其在图像中显得比较大。 Perspective distortions need to be compensated in regression-based crowd counting methods

真值密度图的生成还是 人头位置的 Gaussian kernels 的求和,使用 perspective maps 来矫正 perspective distortion,主要根据这个 perspective maps 来设置 Gaussian kernels 中参数 the ground truth density map is defined as a summation of all the Gaussian kernels centering at each center of the objects. Due to the varying sizes of pedestrians caused by perspective distortion, it is necessary to incorporate specific scene geometric information to cover the size variations

下面接着来看这个 deconvolution network

网络的输入是 RGB images and the perspective maps L2 loss between the estimated and ground truth density maps is used to train our netowrk:

4.2. Baseline model: the counting FCN 基于语义分割框架 FCN的 baseline model (CFCN): the CFCN network constitutes layers from conv1 to conv4, with filter sizes of 32 7×7×3, 32 7×7×32, 64 5×5×32 for the first three layers.

4.3. Deconvolution network CFCN-DCN:加了两个卷积层 conv5 with filter size 5 × 5 and conv6 with filter size 7 × 7 are learnable kernels for precisely dense output a full-resolution output map

4.4. Perspective fusion the perspective-embedded deconvolution network (PE-CFCN-DCN) 这里看 图2 比较直接明了 A perspective map pyramid is constructed at different resolutions according to the network. Then fusion layer is implemented by direct concatenation of the feature maps from the RGB input and the correspondingly-sized perspective map. Each fusion layer is inserted before each deconvolution block for guided interpolation.

the labeled perspective map 这个怎么得到了?

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

教程 | 自动化机器学习第一步:使用Hyperopt自动选择超参数

3679
来自专栏AI科技大本营的专栏

AI 技术讲座精选:如何在时序预测问题中在训练期间更新LSTM网络

使用神经网络解决时间序列预测问题的好处是网络可以在获得新数据时对权重进行更新。 在本教程中,你将学习如何使用新数据更新长短期记忆(LTCM)递归神经网络。 在...

3266
来自专栏机器学习算法与Python学习

特征工程技能图谱

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 特征工程所涵盖的问题 本文主要想强调...

2794
来自专栏大数据文摘

资源 | Kaggle数据科学项目索引表,10大类93项,更新中

为了使Kaggle上的资源获得最大化的利用,一位来自印度的数据科学家sban设计了一个数据科学模型、技术和工具的项目索引表。

730
来自专栏小小挖掘机

数据城堡参赛代码实战篇(六)---使用sklearn进行数据标准化及参数寻优

小编们最近参加了数据城堡举办的“大学生助学金精准资助预测”比赛,分组第19名的成绩进入了复赛,很激动有木有!在上一篇文章中,小编介绍了一下我们准备使用的分类算法...

3277
来自专栏杨熹的专栏

读书|《Mastering Machine Learning with Python in Six Steps》

蜗牛最近精力真是有限,很快就要大考了,不过读书不能停。 接下来几天读一读 《Mastering Machine Learning with Python in ...

34010
来自专栏大数据挖掘DT机器学习

朴素贝叶斯新闻分类器详解

机器学习的三要素是模型、策略(使用Cost Function计算这个模型是不是好的)和优化算法(不断的寻找最优参数,找到一个参数后用策略判断一下是不是可以,不行...

3387
来自专栏AI研习社

教程 | Hinton 机器学习视频中文版:神经网络架构介绍(2.2)

本套课程中,Hinton 重点介绍了人工神经网络在语音识别和物体识别、图像分割、建模语言和人类运动等过程中的应用,及其在机器学习中发挥的作用。与吴恩达的《Mac...

2645
来自专栏专知

【专知-Java Deeplearning4j深度学习教程05】无监督特征提取神器—AutoEncoder:图文+代码

【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视...

40611
来自专栏机器人网

人工智能“六步走”学习路线

高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础

782

扫码关注云+社区