STM32—无需中断来实现使用DMA接收串口数据

本节目标:

  • 通过DMA,无需中断,接收不定时长的串口数据

描述: 当在串口多数据传输下,CPU会产生多次中断来接收串口数据,这样会大大地降低CPU效率,同时又需要CPU去做其它更重要的事情,我们应该如何来优化? 比如四轴飞行器,当在不停地获取姿态控制方向时,又要去接收串口数据. 答:使用DMA,无需CPU中断便能实现接收串口数据

1.DMA介绍 DMA,全称为: Direct Memory Access,即直接存储器访问, DMA 传输方式无需 CPU 直接 控制传输,通过硬件为 RAM 与 I/O 设备开辟一条直接传送数据的通路,能使 CPU 的效率大为提高。 2在main()中调用串口配置函数,初始化串口后,然后使能UART1_RX的DMA接收 2.1在main()函数中,使用以下函数来调用配置函数:

uart_init(115200); //串口初始化为115200

2.2 uart_init()函数如下:

void uart_init(u32 bound){
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);    //使能USART1,GPIOA时钟
//USART1_TX GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;    //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9

//USART1_RX    GPIOA.10初始化
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10 
USART_InitStructure.USART_BaudRate = bound;//串口波特率
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;    //收发模式

USART_Init(USART1, &USART_InitStructure); //初始化串口1
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE); //使能串口1的DMA发送
}

3.在main()中调用DMA配置函数,然后初始化DMA1的UART1_RX通道后,便使能串口1和DMA 3.1如下图所示,UART1_RX位于DMA1通道5:

所以使用库函数中变量DMA1_Channel5 来配置UART1_RX. 3.2在main()函数中,定义一个接收数组,使用以下3个参数来调用配置函数:

u8 USART_RX_BUF[35]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 
MYDMA_Config(DMA1_Channel5,(u32)&USART1->DR,(u32)USART_RX_BUF,35);//DMA1通道5,外设为串口1,存储器为SendBuff,长度35,

3.3 MYDMA_Config()函数如下,最后会调用MYDMA_Enable()开始一次DMA传输!:

void MYDMA_Config(DMA_Channel_TypeDef* DMA_CHx,u32 cpar,u32 cmar,u16 cndtr)
{
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);    //使能DMA传输
DMA_DeInit(DMA_CHx); //将DMA的通道1寄存器重设为缺省值
DMA1_MEM_LEN=cndtr;
DMA_InitStructure.DMA_PeripheralBaseAddr = cpar; //DMA外设基地址
DMA_InitStructure.DMA_MemoryBaseAddr = cmar; //DMA内存基地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //数据传输方向,从内存读取发送到外设
DMA_InitStructure.DMA_BufferSize = cndtr; //DMA通道的DMA缓存的大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //内存地址寄存器递增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //数据宽度为8位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度为8位
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //工作在正常模式
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //DMA通道 x拥有中优先级 
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道x没有设置为内存到内存传输
DMA_Init(DMA_CHx, &DMA_InitStructure); //根据DMA_InitStruct中指定的参数初始化DMA的通道USART1_Rx_DMA 所标识的寄存器
USART_Cmd(USART1, ENABLE); //使能串口1 
DMA_Cmd(DMA_CHx, ENABLE); //使能USART1 TX DMA1 所指示的通道 
MYDMA_Enable(DMA1_Channel5);//开始一次DMA传输!
} 

3.4 MYDMA_Enable()函数如下:

void MYDMA_Enable(DMA_Channel_TypeDef*DMA_CHx)
{ 
DMA_Cmd(DMA_CHx, DISABLE ); //关闭USART1 TX DMA1 所指示的通道 
DMA_SetCurrDataCounter(DMA_CHx,DMA1_MEM_LEN);//从新设置缓冲大小,指向数组0
DMA_Cmd(DMA_CHx, ENABLE); //使能USART1 TX DMA1 所指示的通道 
}    

4.然后当USART_RX_BUF[0]是有数据了,适当的延时10ms,让UCOS继续操作其它进程,就能收到不定长的所有数据啦 代码如下(也可以放在无操作系统的while中):

if(USART_RX_BUF[0])    //数组0有数据了,说明DMA开始接收一段数据
{
delay_ms(10); //延时10ms,让DMA继续接收后面数据的同时,也能跑跑其它进程 
printf("1:%s\r\n",USART_RX_BUF); //打印
memset(USART_RX_BUF,0,35);    //清空数组
MYDMA_Enable(DMA1_Channel5);//开始一次DMA传输!
}

上面代码中延时10ms,又能接受多少数据?

在波特率115200下,1S能接受115200位bit,然后一个字节为8位bit,再加上一位停止位,所以可以接受12800个数据.

那么10ms,可以接受128个数据,如果数据数组较大,可以适当的提高延时时间

5.测试效果 如下图所示,输入多少就回显多少,说明已经成功,我这里是设置的接收数组大小为35,如果需要更长的数据,就改变数组大小即可

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏流媒体

MediaCodec进行AAC编解码(文件格式转换)

AAC,全称Advanced Audio Coding,是一种专为声音数据设计的文件压缩格式。与MP3不同,它采用了全新的算法进行编码,更加高效,具有更高的“性...

1215
来自专栏Java Edge

代理模式定义和类型使用场景优点缺点扩展2 实战源码分析

511
来自专栏Java与Android技术栈

Scrypt 不止是加密算法,也是莱特币的挖矿算法

Scrypt不仅计算所需时间长,而且占用的内存也多,使得并行计算多个摘要异常困难,因此利用rainbow table进行暴力攻击更加困难。Scrypt 没有在生...

924
来自专栏伦少的博客

利用Spark实现Oracle到Hive的历史数据同步

和上一篇文章Spark通过修改DataFrame的schema给表字段添加注释一样,通过Spark将关系型数据库(以Oracle为例)的表同步的Hive,这里讲...

573
来自专栏知识分享

关于STM32空闲中断

有一次做一个东西,为了尽量不占用CPU的处理数据时间,所以就使用DMA接收串口的数据,但是呢问题来了.,,,,,怎么样才能确定接收到了一条完整的数据了,,我们都...

3228
来自专栏jeremy的技术点滴

《Network Programming with Go》阅读重点备忘(一)

2887
来自专栏蓝天

Redis源码笔记-初步

Redis代码优美,注释也很到位,阅读起来会赏心悦目,大大降低了理解门槛。由于redis单线程几乎完成所有工作,整体逻辑是相当复杂的,涉及了太多状态,作者的...

612
来自专栏安富莱嵌入式技术分享

【RL-TCPnet网络教程】第5章 PHY芯片和STM32的MAC基础知识

本章节为大家讲解STM32自带的MAC和PHY芯片的基础知识,为下一章底层驱动的讲解做一个铺垫。

1213
来自专栏有刻

Java 小记 - 时间的处理与探究

时间的处理与日期的格式转换几乎是所有应用的基础职能之一,几乎所有的语言都会为其提供基础类库。作为曾经 .NET 的重度使用者,赖其优雅的语法,特别是可扩展方法这...

1465
来自专栏技术小讲堂

LINQ to SQL(2):生成对象模型

在LINQ to SQL中,可以使用自己的编程语言的对象模型映射到关系数据库,在上一节课,已经有一部分内容,简单的介绍了一下这种对象模型的结构,这一节,我们主要...

2564

扫码关注云+社区