linux系统编程之管道(二):管道读写规则和Pipe Capacity、PIPE_BUF

一、当没有数据可读时

O_NONBLOCK disable:read调用阻塞,即进程暂停执行,一直等到有数据来到为止。

O_NONBLOCK enable:read调用返回-1,errno值为EAGAIN。

示例程序如下:

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>
#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

int main(int argc, char *argv[])
{
    int pipefd[2];
    if (pipe(pipefd) == -1)
        ERR_EXIT("pipe error");

    pid_t pid;
    pid = fork();
    if (pid == -1)
        ERR_EXIT("fork error");

    if (pid == 0)
    {
        sleep(3);
        close(pipefd[0]);
        write(pipefd[1], "hello", 5);
        close(pipefd[1]);
        exit(EXIT_SUCCESS);
    }

    close(pipefd[1]);
    char buf[10] = {0};
    int flags = fcntl(pipefd[0], F_GETFL);
    fcntl(pipefd[0], F_SETFL, flags | O_NONBLOCK); //enable fd的O_NONBLOCK
    int ret = read(pipefd[0], buf, 10); //默认是disable fd的O_NONBLOCK
    if (ret == -1) // 父进程不会阻塞,出错返回
        ERR_EXIT("read error");
    printf("buf=%s\n", buf);

    return 0;
}

特意在子进程中sleep了3s,让父进程先被调度运行,而且读端文件状态标志设置为非阻塞,即立刻出错返回,如下。

simba@ubuntu:~/Documents/code/linux_programming/APUE/pipe$ ./pipe_block  read error: Resource temporarily unavailable

二、当管道满的时候 O_NONBLOCK disable: write调用阻塞,直到有进程读走数据 O_NONBLOCK enable:调用返回-1,errno值为EAGAIN

管道是一块内存缓冲区,可以写个小程序测试一下管道的容量Pipe Capacity:

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>
#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

int main(int argc, char *argv[])
{
    int pipefd[2];
    if (pipe(pipefd) == -1)
        ERR_EXIT("pipe error");

    int ret;
    int count = 0;
    int flags = fcntl(pipefd[1], F_GETFL);
    fcntl(pipefd[1], F_SETFL, flags | O_NONBLOCK); // 设置为非阻塞
    while (1)
    {
        ret = write(pipefd[1], "A", 1);
        if (ret == -1)
        {
            printf("err=%s\n", strerror(errno));
            break;
        }

        count++;
    }
    printf("count=%d\n", count); //管道容量

    return 0;
}

程序中将写端文件状态标志设置为非阻塞,当管道被写满时不会等待其他进程读取数据,而是直接返回-1并置errno,输出如下: simba@ubuntu:~/Documents/code/linux_programming/APUE/pipe$ ./pipe_capacity  err=Resource temporarily unavailable count=65536

打印了错误码,可以看到管道的容量是64kB,man 7 pipe中也有提到在2.6.11内核以前是4096,现在是65536。

三、如果所有管道读端对应的文件描述符被关闭(管道读端的引用计数等于0),则write操作会产生SIGPIPE信号,默认终止当前进程

示例代码如下:

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>
#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

void handler(int sig)
{
    printf("recv sig=%d\n", sig);
}

int main(int argc, char *argv[])
{
    signal(SIGPIPE, handler);

    int pipefd[2];
    if (pipe(pipefd) == -1)
        ERR_EXIT("pipe error");

    pid_t pid;
    pid = fork();
    if (pid == -1)
        ERR_EXIT("fork error");

    if (pid == 0)
    {
        close(pipefd[0]);
        exit(EXIT_SUCCESS);
    }
    close(pipefd[0]);
    sleep(1);
    int ret = write(pipefd[1], "hello", 5);
    if (ret == -1)
    {
        printf("err=%s\n", strerror(errno));
    }

    return 0;
}

输出测试:

simba@ubuntu:~/Documents/code/linux_programming/APUE/pipe$ ./close_fd_read  recv sig=13 err=Broken pipe

父进程睡眠1s确保所有读端文件描述符都已经关闭,如果没有安装SIGPIPE信号的处理函数,则默认终止当前进程,即write函数不会返回,现在write错误返回-1,并置errno=EPIPE,对应的出错信息是Broken pipe。

四、如果所有管道写端对应的文件描述符被关闭(管道写端的引用计数等于0),那么管道中剩余的数据都被读取后,再次read会返回0

示例程序如下:

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>
#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

void handler(int sig)
{
    printf("recv sig=%d\n", sig);
}

int main(int argc, char *argv[])
{
    signal(SIGPIPE, handler);

    int pipefd[2];
    if (pipe(pipefd) == -1)
        ERR_EXIT("pipe error");

    pid_t pid;
    pid = fork();
    if (pid == -1)
        ERR_EXIT("fork error");

    if (pid == 0)
    {
        close(pipefd[1]);
        exit(EXIT_SUCCESS);
    }

    close(pipefd[1]);
    sleep(1);
    char buf[10] = {0};
    int ret = read(pipefd[0], buf, 10);
    printf("ret = %d\n", ret);

    return 0;
}

输出测试如下:

simba@ubuntu:~/Documents/code/linux_programming/APUE/pipe$ ./close_fd_write  ret = 0

同样地父进程睡眠1s确保所有的写端文件描述符都已经关闭,read返回0。

五、当要写入的数据量不大于PIPE_BUF时,linux将保证写入的原子性;当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。

On  Linux, PIPE_BUF is 4096 bytes。

 The precise semantics depend on whether the file descriptor is nonblocking (O_NONBLOCK), whether there are multiple writers to the pipe, and on n, the number of bytes to be written。即由文件描述符是否是非阻塞的,是否有多个进程向管道写入以及写入的字节数所决定准确的语义,总共分4种情况,具体可man一下。

下面的程序演示 O_NONBLOCK disabled ,size > PIPE_BUF(4K)的情况 :

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/
#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>
#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

#define TEST_SIZE 68*1024 // 68KB
/* 默认O_NONBLOCK disabled ,这里验证 size > PIPE_BUF(4K)的情况 */
int main(int argc, char *argv[])
{
    char a[TEST_SIZE];
    char b[TEST_SIZE];

    memset(a, 'A', sizeof(a));
    memset(b, 'B', sizeof(b));

    int pipefd[2];
    int ret = pipe(pipefd);
    if (ret == -1)
        ERR_EXIT("pipe error");

    int pid = fork();
    if (pid == 0)
    {

        close(pipefd[0]);
        ret = write(pipefd[1], a, sizeof(a)); // 全部写完才返回
        printf("apid=%d write %d bytes to pipe\n", getpid(), ret);
        exit(0);
    }

    pid = fork();

    if (pid == 0)
    {

        close(pipefd[0]);
        ret = write(pipefd[1], b, sizeof(b));
        printf("bpid=%d write %d bytes to pipe\n", getpid(), ret);
        exit(0);
    }

    close(pipefd[1]);

    sleep(1);

    int fd = open("test.txt", O_WRONLY | O_CREAT | O_TRUNC, 0664);
    char buf[1024 * 4] = {0};
    int n = 1;
    while (1)
    {
        ret = read(pipefd[0], buf, sizeof(buf)); //当管道被写入数据,就已经可以开始读了,每次读取4k
        if (ret == 0) // 管道写端全部关闭,即读到了结尾
            break;
        printf("n=%02d pid=%d read %d bytes from pipe buf[4095]=%c\n",
               n++, getpid(), ret, buf[4095]);
        write(fd, buf, ret);
    }

    return 0;
}

输出测试如下:

simba@ubuntu:~/Documents/code/linux_programming/APUE/pipe$ ./pipe_buf  n=01 pid=7137 read 4096 bytes from pipe buf[4095]=B n=02 pid=7137 read 4096 bytes from pipe buf[4095]=B n=03 pid=7137 read 4096 bytes from pipe buf[4095]=B n=04 pid=7137 read 4096 bytes from pipe buf[4095]=B n=05 pid=7137 read 4096 bytes from pipe buf[4095]=B n=06 pid=7137 read 4096 bytes from pipe buf[4095]=B n=07 pid=7137 read 4096 bytes from pipe buf[4095]=B n=08 pid=7137 read 4096 bytes from pipe buf[4095]=B n=09 pid=7137 read 4096 bytes from pipe buf[4095]=B n=10 pid=7137 read 4096 bytes from pipe buf[4095]=B n=11 pid=7137 read 4096 bytes from pipe buf[4095]=B n=12 pid=7137 read 4096 bytes from pipe buf[4095]=B n=13 pid=7137 read 4096 bytes from pipe buf[4095]=B n=14 pid=7137 read 4096 bytes from pipe buf[4095]=B n=15 pid=7137 read 4096 bytes from pipe buf[4095]=B n=16 pid=7137 read 4096 bytes from pipe buf[4095]=B n=17 pid=7137 read 4096 bytes from pipe buf[4095]=A n=18 pid=7137 read 4096 bytes from pipe buf[4095]=A n=19 pid=7137 read 4096 bytes from pipe buf[4095]=A n=20 pid=7137 read 4096 bytes from pipe buf[4095]=A n=21 pid=7137 read 4096 bytes from pipe buf[4095]=A n=22 pid=7137 read 4096 bytes from pipe buf[4095]=A n=23 pid=7137 read 4096 bytes from pipe buf[4095]=A n=24 pid=7137 read 4096 bytes from pipe buf[4095]=A n=25 pid=7137 read 4096 bytes from pipe buf[4095]=A n=26 pid=7137 read 4096 bytes from pipe buf[4095]=A apid=7138 write 69632 bytes to pipe n=27 pid=7137 read 4096 bytes from pipe buf[4095]=A n=28 pid=7137 read 4096 bytes from pipe buf[4095]=A n=29 pid=7137 read 4096 bytes from pipe buf[4095]=A n=30 pid=7137 read 4096 bytes from pipe buf[4095]=A n=31 pid=7137 read 4096 bytes from pipe buf[4095]=A n=32 pid=7137 read 4096 bytes from pipe buf[4095]=A n=33 pid=7137 read 4096 bytes from pipe buf[4095]=A n=34 pid=7137 read 4096 bytes from pipe buf[4095]=B bpid=7139 write 69632 bytes to pipe

分析一下:现在的情况是有两个子进程在对管道进行阻塞写入各68k,即每个子进程完全写入68k才返回,而父进程对管道进行阻塞读取,每次读取4k,打印每4k中的最后一个字符,如果没有数据到达就阻塞等待,如果管道剩余数据不足4k,read 很可能返回 < 4k,但因为我们写入68k是4k整数倍,故不存在这种情况。需要注意的是是边写边读,因为前面说过管道的容量只有64k,当管道被写满时子进程就阻塞等待父进程读取后再写入。由上面输出可以看出B进程先写入64k的B,然后A进程写入68k的A之后B进程接着写完最后4K的B,然后write返回。由A进程write完毕输出的提示可知此时A进程已经写完成了,但父进程还没读取A完毕,当两个子进程全部写完退出时关闭写端文件描述符,则父进程read就会返回0,退出while循环。可以得出结论:当多个进程对管道进行写入,且一次性写入数据量大于PIPE_BUF时,则不能保证写入的原子性,即可能数据是穿插着的。man 手册的解释如下:

       O_NONBLOCK disabled, n > PIPE_BUF  The write is nonatomic: the data given to write(2) may be interleaved with write(2)s by other process;  the write(2) blocks until n bytes have been written.

注意我们这里设定了size=68k,则写端不能设置成非阻塞,因为Pipe Capacity 只有64k,不能一次性写入68k,如果此时管道是满的(64k),则只能返回-1并置错误码为EAGAIN,且一个字符也不写入,若不是满的,则写入的字节数是不确定的,需要检查write的返回值,而且这些字节很可能也与其他进程写入的数据穿插着。读端也不能设置为非阻塞,如果此时尚未有数据写入(管道为空)则返回-1并置错误码为EAGAIN,如果有部分数据已经写入,则读取的数据字节数也是不确定的,需要检查read的返回值。总之测试4种不同情形下的情况也应设置不同的条件。

 O_NONBLOCK disabled, n <= PIPE_BUF               All n bytes are written atomically; write(2) may block if there is not room for n bytes to be written imme‐               diately        O_NONBLOCK enabled, n <= PIPE_BUF               If  there  is  room  to write n bytes to the pipe, then write(2) succeeds immediately, writing all n bytes;               otherwise write(2) fails, with errno set to EAGAIN.        O_NONBLOCK disabled, n > PIPE_BUF               The write is nonatomic: the data given to write(2) may be interleaved with write(2)s by other process;  the               write(2) blocks until n bytes have been written.        O_NONBLOCK enabled, n > PIPE_BUF               If  the  pipe  is full, then write(2) fails, with errno set to EAGAIN.  Otherwise, from 1 to n bytes may be               written (i.e., a "partial write" may occur; the caller should check the return value from write(2)  to  see               how many bytes were actually written), and these bytes may be interleaved with writes by other processes.

管道的前4种读写规则具有普遍意义,Tcp socket 也具有管道的这些特性。

参考:《APUE》

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大内老A

谈谈分布式事务之三: System.Transactions事务详解[上篇]

在.NET 1.x中,我们基本是通过ADO.NET实现对不同数据库访问的事务。.NET 2.0为了带来了全新的事务编程模式,由于所有事务组件或者类型均定义在Sy...

2008
来自专栏nummy

命令模式

733
来自专栏友弟技术工作室

ElasticSearch入门实战1

813
来自专栏数据之美

关于 xargs 参数被截断,tar 文件被覆盖的问题

问题: 目录下共 2W+ 个小文件: $ find . -type f | wc -l   20083   如果我们这样打包,会爆出 "Arg...

1836
来自专栏魏琼东

一步一步教你使用AgileEAS.NET基础类库进行应用开发-基础篇-通过SQL实现特殊业务

          前面的四篇文章演示ORM的一些常规操作与配置,通过前面的文章,应用开发人员要可以使用ORM开发出简单的应用,但是,ORM也不是万能钥匙,在业...

1969
来自专栏Java面试笔试题

MyBatis <set>标签的使用

MyBatis在生成update语句时若使用if标签,如果前面的if没有执行,则可能导致有多余逗号的错误。 使用set标签可以将动态的配置SET 关键字,和剔...

742
来自专栏菩提树下的杨过

XmlSpy / XSD 以及 验证

很早以前看过一句话:“XML就象空气”,在企业应用开发中XML是一个重要的数据交换标准。而XSD则可以用来校验XML的数据格式是否正确。 一个典型的XSD文件如...

18510
来自专栏乐沙弥的世界

PGA的设置与调整

    PGA,即程序全局区(Program Global Area),是Oracle体系机构的重要组成部分。Oracle 数据库对系统内存的总开销即是PGA+...

582
来自专栏Java帮帮-微信公众号-技术文章全总结

Hibernate_day02总结

Hibernate_day02总结 今日内容 l Hibernate持久化对象的状态 l Hibernate的一级缓存 l Hibernate操作持久化对象的方...

34711
来自专栏游戏杂谈

【汇总】flash单个文件上传

之前有朋友给我发送email,询问我是否有单个文件上传的源代码,因为当时写这个好像是在09年,所以放哪了一时也没找着。后来整理硬盘的时候,找到了源码,所以决定...

602

扫码关注云+社区