算法:最短路径之弗洛伊德(Floyd)算法

为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例。图7-7-12的左图是一个简单的3个顶点的连通网图。

我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵。P代表对应顶点的最短路径的前驱矩阵。在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵。将P命名为P(-1), 初始化为图中的矩阵。

首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径。因为只有3个顶点,因此需要查看v1->v0->v2,得到

D(-1)[1][0] + D(-1)[0][2] = 3。D(-1)[1][2]表示的是v1->v2的权值为5,我们发现D(-1)[1][2] > D(-1)[1][0] + D(-1)[0][2] ,通俗话来说就是

v1->v0->v2 比v1->v2距离还要近。所以我们就让 D(-1)[1][2] = D(-1)[1][0] + D(-1)[0][2] = 3, 同样地D(-1)[2][1] = 3, 于是就有了D(0)矩阵。因为有变化,所以P矩阵对应的P(-1)[1][2]和P(-1)[2][1]也修改为当前中转的顶点v0的下标0, 于是就有了P(0)。也就是说

接下来,也就是在D(0)和P(0)的基础上继续处理所有顶点经过v1和v2后到达另一顶点的最短路径,得到D(1)和P(1)、D(2)和P(2)完成所有顶点到所有顶点的最短路径计算工作。

首先我们针对图7-7-13的左网图准备两个矩阵D(-1)和P(-1),D(-1)就是网图的邻接矩阵,P(-1)初设为P[i][j]=j 这样的矩阵。主要用来存储路径。

代码如下(改编自《大话数据结构》):注意因为是要求所有顶点到所有顶点的最短路径,因为使用二维数组。

#include<iostream>
using namespace std;

#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535

typedef struct
{
    int vexs[MAXVEX];
    int arc[MAXVEX][MAXVEX];
    int numVertexes, numEdges;
} MGraph;

typedef int Patharc[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];

/* 构建图 */
void CreateMGraph(MGraph *G)
{
    int i, j;

    /* printf("请输入边数和顶点数:"); */
    G->numEdges = 16;
    G->numVertexes = 9;

    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        G->vexs[i] = i;
    }

    for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
    {
        for ( j = 0; j < G->numVertexes; j++)
        {
            if (i == j)
                G->arc[i][j] = 0;
            else
                G->arc[i][j] = G->arc[j][i] = INFINITY;
        }
    }

    G->arc[0][1] = 1;
    G->arc[0][2] = 5;
    G->arc[1][2] = 3;
    G->arc[1][3] = 7;
    G->arc[1][4] = 5;

    G->arc[2][4] = 1;
    G->arc[2][5] = 7;
    G->arc[3][4] = 2;
    G->arc[3][6] = 3;
    G->arc[4][5] = 3;

    G->arc[4][6] = 6;
    G->arc[4][7] = 9;
    G->arc[5][7] = 5;
    G->arc[6][7] = 2;
    G->arc[6][8] = 7;

    G->arc[7][8] = 4;


    for(i = 0; i < G->numVertexes; i++)
    {
        for(j = i; j < G->numVertexes; j++)
        {
            G->arc[j][i] = G->arc[i][j];
        }
    }

}
/* Floyd算法,求网图G中各顶点v到其余顶点w的最短路径P[v][w]及带权长度D[v][w]。 */
void ShortestPath_Floyd(MGraph MG, Patharc P, ShortPathTable D)
{
    int v, w, k;
    for (v = 0; v < MG.numVertexes; v++)/* 初始化D与P */
    {
        for (w = 0; w < MG.numVertexes; w++)
        {
            D[v][w] = MG.arc[v][w];/* D[v][w]值即为对应点间的权值 */
            P[v][w] = w;/* 初始化P */
        }
    }

    for (k = 0; k < MG.numVertexes; k++)
    {
        for (v = 0; v < MG.numVertexes; v++)
        {
            for (w = 0; w < MG.numVertexes; w++)
            {
                /* 如果经过下标为k顶点路径比原两点间路径更短 */
                if (D[v][w] > D[v][k] + D[k][w])
                {
                    /* 将当前两点间权值设为更小的一个 */
                    D[v][w] = D[v][k] + D[k][w];
                    P[v][w] = P[v][k];/* 路径设置为经过下标为k的顶点 */
                }
            }
        }
    }
}

int main(void)
{
    int v, w, k;
    MGraph MG;
    Patharc P;
    ShortPathTable D;
    CreateMGraph(&MG);
    ShortestPath_Floyd(MG, P, D);

    cout << "各顶点间最短路径如下: " << endl;

    for (v = 0; v < MG.numVertexes; v++)
    {
        for (w = v + 1; w < MG.numVertexes; w++)
        {
            cout << "v" << v << "--" << "v" << w << " weight: " << D[v][w]
                 << " Path: " << v << ' ';
            k = P[v][w];
            while (k != w)
            {
                cout << "-> " << k << " ";
                k = P[k][w];
            }
            cout << "-> " << w << endl;
        }
        cout << endl;
    }

    return 0;
}

输出为:

程序中的算法代码非常简洁,即用了一个三层循环,k代表的是中转结点的下标,v代表起始结点,w代表结束终点。k = 0 ~ 8,表示针对每个顶点作为中转结点得到的计算结果,最终当k = 8时,两矩阵数据如图7-7-16所示。

从上图我们可以看到第v2行的数值与Dijkstra算法求得的D数组的数值完全一样,都是{4, 3, 0, 3, 1, 4, 6, 8, 12 }, 而且这里是所有顶点到所有顶点的最短路径权值和都可以计算得出。那么如何由P这个路径数组得出具体的最短路径呢?以v2到v8为例,P[2][8] = 4,说明要经过顶点v4, 将4替换2,P[4][8] = 3, 说明经过v3, ......., 最终推导出最短路径为:v2->v4->v3->v6->v7->v8。

Floyd算法使用了三层循环,故时间复杂度也为O(n^3),与Dijkstra算法一致,不过Floyd算法代码简洁,虽简洁但也不一定好懂,还是需要多加揣摩才能领会。另外,虽然我们使用的例子都是无向图的,但它们对于有向图依然有效,只不过在创建图的时候,有向图的邻接矩阵不是对称的而已。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据结构与算法

字符串hash入门

简单介绍一下字符串hash 相信大家对于hash都不陌生 hash算法广泛应用于计算机的各类领域,像什么md5,文件效验,磁力链接 等等都会用到hash算法 在...

3465
来自专栏Bingo的深度学习杂货店

Q53 Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) wh...

2806
来自专栏King_3的技术专栏

leetcode-172-Factorial Trailing Zeroes

1784
来自专栏数据结构与算法

1570. [POJ3461]乌力波

★☆   输入文件:oulipo.in   输出文件:oulipo.out 简单对比 时间限制:1 s   内存限制:256 MB 【题目描述】 法国作家乔治·...

2927
来自专栏小樱的经验随笔

Codeforces Round #301 (Div. 2)(A,【模拟】B,【贪心构造】C,【DFS】)

A. Combination Lock time limit per test:2 seconds memory limit per test:256 mega...

28510
来自专栏程序生活

卡特兰数简介原理性质应用参考:

简介 卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。 卡塔兰数的一般项公式为: ? 卡特兰公式 其前20项为:1, 1, 2, ...

3404
来自专栏潇涧技术专栏

Problem: Vertext Cover Problem

给定一个N个点M条边的无向图G(点的编号从1至N),问是否存在一个不超过K个点的集合S,使得G中的每条边都至少有一个点在集合S中。

722
来自专栏数据结构与算法

洛谷P1586 四方定理

题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如: ,当然还有其他的分解方案, 和 。给定的正整数nn ,编程...

2655
来自专栏mathor

第五届蓝桥杯决赛B组C/C++——Log大侠

876
来自专栏hanlp学习笔记

hanlp中的N最短路径分词

N-最短路径 是中科院分词工具NLPIR进行分词用到的一个重要算法,张华平、刘群老师在论文《基于N-最短路径方法的中文词语粗分模型》中做了比较详细的介绍。该算法...

770

扫码关注云+社区