用R语言实现深度学习情感分析

18岁虽然没有成为TF-boys,但是2018新的一年可以成为TF(Tensorflow-boys)啊~~

word embeddings介绍

之前建立的情感分类的模型都是Bag of words方法,仅仅统计词出现的次数这种方法破坏了句子的结构。这样的结构,我们也可以使用如下的向量(one hot 编码)表示句子「The cat sat on the mat」:

然而,在实际应用中,我们希望学习模型能够在词汇量很大(10,000 字以上)的情况下进行学习。从这里能看到使用「独热码」表示单词的效率问题——对这些词汇建模的任何神经网络的输入层至少都有 17000,000 个节点。因此,我们需要使用更高效的方法表示文本数据,而这种方法不仅可以保存单词的上下文的信息,而且可以在更低的维度上表示。这是word embeddings 方法发明的初衷。

word embeddings就是将一个个词映射到低维连续向量(如下图所示) :

这种向量的思想就是将相似的词映射到相似方向,所以,语义相似性就可以被编码了。相似性一般可以通过余弦相似度来衡量

安装TensorFlow和Keras

:安装TensorFlow和Keras前需要安装Anaconda,Anaconda尽量装最新版本的,Anaconda在Windows安装有一些坑,我是把Java环境删掉还有使用默认路径才成功安装了Anaconda。

检测是否安装成功

OK,如果没有问题的话,你的结果也将是如上图所示,则表明你已安装成功。

LSTM原理

长短期记忆网络——通常简称“LSTMs”,是一种特殊的RNN,能够学习长期依赖关系,它可以桥接超过1000步的时间间隔的信息。LSTM由Hochreiter和Schmidhuber (1997)提出,在后期工作中又由许多人进行了调整和普及(除了原始作者之外,许多人为现代LSTM做出了贡献)。LSTM在各种各样的问题上工作非常好,现在被广泛使用。

LSTMs被设计出来是为了避免长期的依赖性问题,记忆长时间的信息实际上是他们的固有行为,而不是去学习,这点和传统的具有强大的表征学习能力的深度神经网络不同。

所有的RNNs(包括LSTM)都具有一连串重复神经网络模块的形式。在标准的RNNs中,这种重复模块有一种非常简单的结构,比如单个tanh层:

什么是tanh?中文叫双曲正切函数,属于神经网络隐藏层的activation function(激活函数)中的一种。别以为是什么好厉害的东西,其实就是一个简单的以原点对称的值域为[-1,1]的非线性函数。而神经网络中比较常见的另外一个激活函数sigmoid 函数,则不过是把tanh函数往上平移到[0,1]的区间,这个函数在LSTM也会用到。

LSTM也有像RNN这样的链式结构,只不过重复模块有着与传统的RNN不同的结构,比传统的RNN复杂不少:不只是有一个神经网络层,而是有四个神经网络层,以一个非常特殊的方式进行交互。

不用担心看不懂细节部分是什么意思,稍后我们将逐步浏览LSTM图。现在,让我们试着去熟悉我们将要使用的符号。

在上面所示的图中,我们对以上符号进行如下定义:

黄块表示学习神经网络层(tanh层或sigmoid层);

粉色圆圈表示按位操作,如向量加法或者向量点乘;

每条线代表着一整个向量(vector),用来表示从一个节点的输出到另一个节点的输入;

合并的线代表连接或者说是拼接;

分叉表示其内容被复制,复制内容将转到不同的位置

LSTMs背后的核心理念

LSTMs的关键是细胞状态(cell state),是一条水平线,贯穿图的顶部。而Cell 的状态就像是传送带,它的状态会沿着整条链条传送,而只有少数地方有一些线性交互。

因此“门”就是LSTM控制信息通过的方式,这里的” σ “指的是 sigmoid 函数。Sigmoid 层的输出值在 0 到 1 间,表示每个部分所通过的信息。“0” 意味着“让任何事情无法通过”或者说成”忘记所有的事“;“ 1 ”意味着”让一切都通过!“ 或者说”我要记住这一切! “

一个 LSTM 有三个这样的门,分别是“输入门”、遗忘门“和 ”输出门“,在单一模块里面控制 cell 的状态。

遗忘门

首先,LSTM 的第一步就是让信息通过”遗忘门“,决定需要从 cell 中忘掉哪些信息。它的输入是 ht-1 和 xt。另外,我们之所以使用sigmoid激活函数是因为我们所需要的数字介于0至1之间。Ct−1 就是每个在 cell 中所有在 0 和 1 之间的数值,就像我们刚刚所说的,0 代表全抛弃,1 代表全保留。

看到这里应该有朋友会问什么是ht,ht是LSTM层在t时刻的输出,但不是最终的输出,ht仅仅是LSTM层输出的向量,要想得到最终的结果还要连接一个softmax层(sigmoid函数的输出是”0“”1“,但是使用softmax函数能在三个类别以上的时候输出相应的概率以解决多分类问题),而x就是我们的输入,是一个又一个的词语。

输入门

下一步,我们需要决定什么样的信息应该被存储起来。这个过程主要分两步。首先是 sigmoid 层(这就是“输入门”)决定我们需要更新哪些值;随后,tanh 层生成了一个新的“候选添加记忆” C`t,最后,我们将这两个值结合起来。结合后能够加入cell的状态(长期记忆)中。

接下来我们可以更新 cell (长期记忆)的状态了。首先第一步将旧状态与通过遗忘门得到的 ft 相乘,忘记此前我们想要忘记的内容,然后加上通过输入门和tanh层得到的候选记忆 C`t。在忘记我们认为不再需要的记忆并保存输入信息的有用部分后,我们就会得到更新后的长期记忆。

输出门

接下来我们来更新一下ht,即输出的内容,这部分由输出门来完成。首先,我们把 cell 状态通过 tanh 函数,将输出值保持在-1 到 1 间。随后,前一时刻的输出ht-1和xt会通过一个 sigmoid 层,决定 cell 状态输出哪一部分。之后,我们再乘以 sigmoid 门的输出值,就可以得到结果了。

R上用LSTM做情感分类

IMDB数据集包含有2.5万条电影评论,被标记为积极和消极。影评会经过预处理,把每一条影评编码为一个词索引(数字)sequence(前面的一种word embeddings方法) 。

当然,可以尝试使用不同的优化器和不同的优化器配置:

上面代码的训练过程如下图所示(我电脑大概用了20min):

接下来,我们再对比其他模型,不妨以随机森林为例:

很显然,集成算法随机森林远远没有LSTM出来的效果好。今天关于基于R语言的深度学习就介绍到这里。最后,很高兴和大家一起学习R上的深度学习。

特别感谢作者:黄升

普兰金融数据分析师,从事数据分析相关工作,擅长R语言,热爱统计和挖掘建模。

本文来自企鹅号 - CPDA数据分析天地媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Python中文社区

深度学习入门:用MNIST完成Autoencoder

專 欄 ❈那只猫,Python中文社区专栏作者,Python中文社区新Logo设计人,纯种非CS科班数据分析人,沉迷Keras。在Cambridge做了点小事...

2076
来自专栏IT派

利用深度学习生成梵高风格画像

现在人工智能是个大热点,而人工智能离不开机器学习,机器学习中深度学习又是比较热门的方向,本系列文章就从实战出发,介绍下如何使用MXnet进行深度学习~ 既然是实...

3538
来自专栏机器之心

资源 | Python上的图模型与概率建模工具包:pomegranate

35411
来自专栏奇点大数据

Pytorch神器(11)

看上去这么乱乱的图就是目标检测应用的输出了,简单说,目标检测的任务就是输入一张图片或者一帧图像,通过一系列计算,使得输出是这样的一个可视化结果或一个等同于这种可...

1443
来自专栏数据科学与人工智能

【陆勤践行】如何选择机器学习算法

How do you know what machine learning algorithm to choose for your classificatio...

1936
来自专栏机器学习、深度学习

人脸检测--Faceness-Net: Face Detection through Deep Facial Part Responses

Faceness-Net: Face Detection through Deep Facial Part Responses PAMI2017 From...

2906
来自专栏ATYUN订阅号

【技术】使用深度学习自动为图像添加字幕(PyTorch)

深度学习现在发展十分迅猛,每天都会出现多种应用程序。而想要了解深度学习的最好方法就是亲自动手。尽可能尝试自己做项目。这将帮助你更深入地了解它们,并帮助你成为更好...

925
来自专栏人工智能

随机森林的简单实现

随机森林(RandomForest):顾名思义,是用随机的方式建立一个森林,森林里面:由很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后...

3477
来自专栏社区的朋友们

深度学习入门实战(一):像Prisma一样算法生成梵高风格画像

现在人工智能是个大热点,而人工智能离不开机器学习,机器学习中深度学习又是比较热门的方向,本系列文章就从实战出发,介绍下如何使用MXnet进行深度学习~

9.2K2
来自专栏大数据文摘

斯坦福CS231N深度学习与计算机视觉第二弹:图像分类与KNN

1544

扫码关注云+社区