Python通过future处理并发

future初识

通过下面脚本来对future进行一个初步了解: 例子1:普通通过循环的方式

 1 import os
 2 import time
 3 import sys
 4 
 5 import requests
 6 
 7 
 8 POP20_CC = (
 9     "CN IN US ID BR PK NG BD RU JP MX PH VN ET EG DE IR TR CD FR"
10 ).split()
11 
12 
13 BASE_URL = 'http://flupy.org/data/flags'
14 
15 DEST_DIR = 'downloads/'
16 
17 
18 def save_flag(img,filename):
19     path = os.path.join(DEST_DIR,filename)
20     with open(path,'wb') as fp:
21         fp.write(img)
22 
23 
24 def get_flag(cc):
25     url = "{}/{cc}/{cc}.gif".format(BASE_URL,cc=cc.lower())
26     resp = requests.get(url)
27     return resp.content
28 
29 
30 def show(text):
31     print(text,end=" ")
32     sys.stdout.flush()
33 
34 
35 def download_many(cc_list):
36     for cc in sorted(cc_list):
37         image = get_flag(cc)
38         show(cc)
39         save_flag(image,cc.lower()+".gif")
40 
41     return len(cc_list)
42 
43 
44 def main(download_many):
45     t0 = time.time()
46     count = download_many(POP20_CC)
47     elapsed = time.time()-t0
48     msg = "\n{} flags downloaded in {:.2f}s"
49     print(msg.format(count,elapsed))
50 
51 
52 if __name__ == '__main__':
53     main(download_many)

例子2:通过future方式实现,这里对上面的部分代码进行了复用

 1 from concurrent import futures
 2 
 3 from flags import save_flag, get_flag, show, main
 4 
 5 
 6 MAX_WORKERS = 20
 7 
 8 
 9 def download_one(cc):
10     image = get_flag(cc)
11     show(cc)
12     save_flag(image, cc.lower()+".gif")
13     return cc
14 
15 
16 def download_many(cc_list):
17     workers = min(MAX_WORKERS,len(cc_list))
18     with futures.ThreadPoolExecutor(workers) as executor:
19         res = executor.map(download_one, sorted(cc_list))
20 
21     return len(list(res))
22 
23 
24 if __name__ == '__main__':
25     main(download_many)

分别运行三次,两者的平均速度:13.67和1.59s,可以看到差别还是非常大的。

future

future是concurrent.futures模块和asyncio模块的重要组件 从python3.4开始标准库中有两个名为Future的类:concurrent.futures.Future和asyncio.Future 这两个类的作用相同:两个Future类的实例都表示可能完成或者尚未完成的延迟计算。与Twisted中的Deferred类、Tornado框架中的Future类的功能类似

注意:通常情况下自己不应该创建future,而是由并发框架(concurrent.futures或asyncio)实例化

原因:future表示终将发生的事情,而确定某件事情会发生的唯一方式是执行的时间已经安排好,因此只有把某件事情交给concurrent.futures.Executor子类处理时,才会创建concurrent.futures.Future实例。 如:Executor.submit()方法的参数是一个可调用的对象,调用这个方法后会为传入的可调用对象排定时间,并返回一个future

客户端代码不能应该改变future的状态,并发框架在future表示的延迟计算结束后会改变期物的状态,我们无法控制计算何时结束。

这两种future都有.done()方法,这个方法不阻塞,返回值是布尔值,指明future链接的可调用对象是否已经执行。客户端代码通常不会询问future是否运行结束,而是会等待通知。因此两个Future类都有.add_done_callback()方法,这个方法只有一个参数,类型是可调用的对象,future运行结束后会调用指定的可调用对象。

.result()方法是在两个Future类中的作用相同:返回可调用对象的结果,或者重新抛出执行可调用的对象时抛出的异常。但是如果future没有运行结束,result方法在两个Futrue类中的行为差别非常大。 对concurrent.futures.Future实例来说,调用.result()方法会阻塞调用方所在的线程,直到有结果可返回,此时,result方法可以接收可选的timeout参数,如果在指定的时间内future没有运行完毕,会抛出TimeoutError异常。 而asyncio.Future.result方法不支持设定超时时间,在获取future结果最好使用yield from结构,但是concurrent.futures.Future不能这样做

不管是asyncio还是concurrent.futures.Future都会有几个函数是返回future,其他函数则是使用future,在最开始的例子中我们使用的Executor.map就是在使用future,返回值是一个迭代器,迭代器的__next__方法调用各个future的result方法,因此我们得到的是各个futrue的结果,而不是future本身

关于future.as_completed函数的使用,这里我们用了两个循环,一个用于创建并排定future,另外一个用于获取future的结果

 1 from concurrent import futures
 2 
 3 from flags import save_flag, get_flag, show, main
 4 
 5 
 6 MAX_WORKERS = 20
 7 
 8 
 9 def download_one(cc):
10     image = get_flag(cc)
11     show(cc)
12     save_flag(image, cc.lower()+".gif")
13     return cc
14 
15 
16 def download_many(cc_list):
17     cc_list = cc_list[:5]
18     with futures.ThreadPoolExecutor(max_workers=3) as executor:
19         to_do = []
20         for cc in sorted(cc_list):
21             future = executor.submit(download_one,cc)
22             to_do.append(future)
23             msg = "Secheduled for {}:{}"
24             print(msg.format(cc,future))
25 
26         results = []
27         for future in futures.as_completed(to_do):
28             res = future.result()
29             msg = "{}result:{!r}"
30             print(msg.format(future,res))
31             results.append(res)
32 
33     return len(results)
34 
35 
36 if __name__ == '__main__':
37     main(download_many)

结果如下:

注意:Python代码是无法控制GIL,标准库中所有执行阻塞型IO操作的函数,在等待操作系统返回结果时都会释放GIL.运行其他线程执行,也正是因为这样,Python线程可以在IO密集型应用中发挥作用

以上都是concurrent.futures启动线程,下面通过它启动进程

concurrent.futures启动进程

concurrent.futures中的ProcessPoolExecutor类把工作分配给多个Python进程处理,因此,如果需要做CPU密集型处理,使用这个模块能绕开GIL,利用所有的CPU核心。 其原理是一个ProcessPoolExecutor创建了N个独立的Python解释器,N是系统上面可用的CPU核数。 使用方法和ThreadPoolExecutor方法一样

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏西安-晁州

js中的深浅拷贝

js中的深浅拷贝 js中有深拷贝、浅拷贝一说,所谓的深浅拷贝是针对value类型为引用类型(函数、对象、数组)而言的,大概理解的就是: 浅拷贝: 拷贝出...

3265
来自专栏软件开发 -- 分享 互助 成长

函数指针

前言: 先看两个基础,函数指针和extern关键字,然后由一个具体的例子,具体使用下函数指针。 一、基础 函数指针:即指向函数的指针,本质还是一个指针。 函数指...

1756
来自专栏互联网开发者交流社区

我个人对OOP的理解

793
来自专栏重庆的技术分享区

JS-我待this如初见

1142
来自专栏猿人谷

[你必须知道的.NET] 第四回:后来居上:class和struct

本文将介绍以下内容: • 面向对象基本概念 • 类和结构体简介 • 引用类型和值类型区别 1. 引言 提起class和struct,我们首先的感觉是语法几乎相...

18210
来自专栏liukaili_666888999

swift基础1

732
来自专栏C/C++基础

C++智能指针

C++中,动态内存的管理是通过一对运算符来完成的,new用于申请内存空间,调用对象构造函数初始化对象并返回指向该对象的指针。delete接收一个动态对象的指针,...

1121
来自专栏Ryan Miao

java并发编程实践学习(2)--对象的组合

先验条件(Precondition):某些方法包含基于状态的先验条件。例如,不能从空队列中移除一个元素,在删除元素前队列必须处于非空状态。基于状态的先验条件的操...

34414
来自专栏学习力

《Java从入门到放弃》JavaSE入门篇:面向对象语法二(入门版)

1386
来自专栏微信公众号:Java团长

单例模式讨论篇:单例模式与垃圾回收

Jvm的垃圾回收机制到底会不会回收掉长时间不用的单例模式对象,这的确是一个比较有争议性的问题。将这一部分内容单独成篇的目的也是为了与广大博友广泛的讨论一下这个问...

992

扫码关注云+社区