基于FPGA的彩色图像转灰度算法实现

  昨天才更新了两篇博客,今天又要更新了,并不是我垃圾产,只不过这些在上个月就已经写好了,只是因为比赛忙,一直腾不出时间整理出来发表而已,但是做完一件事情总感觉不写一博文总结一下就少点什么,所以之后的一段时间里我会把我这学期学到的一些东西陆续整理出来发表,给自己一个总结交代。

  将彩色图像转化为灰度的方法有两种,一个是令RGB三个分量的数值相等,输出后便可以得到灰度图像,另一种是转化为YCbCr格式,将Y分量提取出来,YCbCr格式中的Y分量表示的是图像的亮度和浓度所以只输出Y分量,得到的图像就是灰度图像了。我在这里选择第二种方法实现。

  YCBCr是通过有序的三元组来表示的,三元由Y(Luminance)、Cb(Chrominance-Blue)和Cr(Chrominance-Red)组成,其中Y表示颜色的明亮度和浓度,而Cb和Cr则分别表示颜色的蓝色浓度偏移量和红色浓度偏移量。人的肉眼对由YCbCr色彩空间编码的视频中的Y分量更敏感,而Cb和Cr的微小变化不会引起视觉上的不同,根据该原理,通过对Cb和Cr进行子采样来减小图像的数据量,使得图像对存储需求和传输带宽的要求大大降低,从而达到在完成图像压缩的同时也保证了视觉上几乎没有损失的效果,进而使得图像的传输速度更快,存储更加方便。我们要的到灰度图像,首先要将采集到的彩色图像转化为YCbCr。

  我们配置摄像头采集到的数据是RGB565的格式,官方给出的转化公式是RGB888->YCbCr,所以先需要将RGB565转化为RGB888,转化方法如下:

  24bit RGB888 -> 16bit RGB565 的转换(只取高位)

  24ibt RGB888 {R7 R6 R5 R4 R3 R2 R1 R0} {G7 G6 G5 G4 G3 G2 G1 G0} {B7 B6 B5 B4 B3 B2 B1 B0}

  16bit RGB656 {R7 R6 R5 R4 R3} {G7 G6 G5 G4 G3 G2} {B7 B6 B5 B4 B3}

  同样也可以恢复回去。

  16bit RGB565 -> 24bit RGB888 的转换(高位补低位)

  16bit RGB656 {R4 R3 R2 R1 R0} {G5 G4 G3 G2 G1 G0} {B4 B3 B2 B1 B0}

  24ibt RGB888 {R4 R3 R2 R1 R0 R2 R1 R0} {G5 G4 G3 G2 G1 G0 G1 G0} {B4 B3 B2 B1 B0 B2 B1 B0}

1 //--------------------------------------------
2 //RGB565 to RGB 888
3 wire     [7:0]    cmos_R0;
4 wire     [7:0]    cmos_G0;
5 wire     [7:0]    cmos_B0;
6 
7 assign cmos_R0    =     {cmos_R, cmos_R[4:2]};
8 assign cmos_G0    =     {cmos_G, cmos_G[5:4]};
9 assign cmos_B0    =     {cmos_B, cmos_B[4:2]};

  采用高位补低位的方法直接转化即可。

  这是官方给的RGB888 to YCbCr的算法公式,我们可以直接把算法移植到FPGA上,但是我们都知道FPGA无法进行浮点运算,所以我们采取将整个式子右端先都扩大256倍,然后再右移8位,这样就得到了FPGA擅长的乘法运算和加法运算了。

  这个计算式子看起来是十分简单的,但是要是直接用Verilog直接写出来,那么只能说,这个人的代码写的一塌糊涂,所以这里就引出FPGA中流水线的设计思想。

     在这里我们选择加3级流水线,就第一个Y分量而言,先计算括号中得乘法运算,消耗一个时钟,然后将括号中的数据求和,消耗一个时钟,这里为了计算方便,将128也扩大256倍,放到括号中,最终结果除以256就行了也就是右移8位,在FPGA中我们只需要舍弃低8位取高8位就行。具体代码如下

 1 //--------------------------------------------
 2 /*Refer to <OV7725 Camera Module Software Applicaton Note> page 5
 3     Y     =    (77 *R     +     150*G     +     29 *B)>>8
 4     Cb     =    (-43*R    -     85 *G    +     128*B)>>8 + 128
 5     Cr     =    (128*R     -    107*G      -    21 *B)>>8 + 128
 6 --->
 7     Y     =    (77 *R     +     150*G     +     29 *B)>>8
 8     Cb     =    (-43*R    -     85 *G    +     128*B + 32768)>>8
 9     Cr     =    (128*R     -    107*G      -    21 *B + 32768)>>8*/
10 //--------------------------------------------
11 //RGB888 to YCrCb
12 //step1 conmuse 1clk
13 reg     [15:0]    cmos_R1, cmos_R2, cmos_R3;
14 reg     [15:0]    cmos_G1, cmos_G2, cmos_G3;
15 reg     [15:0]    cmos_B1, cmos_B2, cmos_B3;
16 always @(posedge clk or negedge rst_n)
17 begin
18     if(!rst_n)begin
19              cmos_R1 <= 16'd0;
20              cmos_G1 <= 16'd0;
21              cmos_B1 <= 16'd0;
22          cmos_R2 <= 16'd0;
23              cmos_G2 <= 16'd0;
24              cmos_B2 <= 16'd0;
25          cmos_R3 <= 16'd0;
26              cmos_G3 <= 16'd0;
27              cmos_B3 <= 16'd0;
28     end
29     else begin
30         cmos_R1 <= cmos_R0 * 8'd77;
31         cmos_G1 <= cmos_G0 * 8'd150;
32         cmos_B1 <= cmos_B0 * 8'd29; 
33         cmos_R2 <= cmos_R0 * 8'd43; 
34         cmos_G2 <= cmos_G0 * 8'd85; 
35         cmos_B2 <= cmos_B0 * 8'd128; 
36       cmos_R3 <= cmos_R0 * 8'd128;
37       cmos_G3 <= cmos_G0 * 8'd107;
38       cmos_B3 <= cmos_B0 * 8'd21;
39     end
40 end
41 
42 //-----------------------------------------------
43 //step2 consume 1clk
44 reg    [15:0]    img_Y0;
45 reg     [15:0]    img_Cb0;
46 reg     [15:0]    img_Cr0;
47 
48 always @(posedge clk or negedge rst_n)
49 begin
50     if(!rst_n)begin
51         img_Y0 <= 16'd0;
52         img_Cb0 <= 16'd0;
53         img_Cr0 <= 16'd0;
54     end
55     else begin
56         img_Y0  <= cmos_R1 + cmos_G1 + cmos_B1;
57         img_Cb0 <= cmos_B2 - cmos_R2 - cmos_G2 + 16'd32768;
58         img_Cr0 <= cmos_R3 - cmos_G3 - cmos_B3 + 16'd32768;
59     end
60     
61 end
62 //-------------------------------------------
63 //step3 conmuse 1clk
64 reg    [7:0]    img_Y1;
65 reg     [7:0]    img_Cb1;
66 reg     [7:0]    img_Cr1;
67 
68 always @(posedge clk or negedge rst_n)
69 begin
70     if(!rst_n)begin
71         img_Y1  <= 8'd0;
72         img_Cb1 <= 8'd0;
73         img_Cr1 <= 8'd0;
74     end
75     else begin
76         img_Y1  <= img_Y0  [15:8];
77         img_Cb1 <= img_Cb0 [15:8];
78         img_Cr1 <= img_Cr0 [15:8];
79     end
80     
81 end 

流水线

   对于流水线的理论详细解释,请看我另一篇博文:http://www.cnblogs.com/ninghechuan/p/6970750.html

  将RGB565—>YCbCr成功后,提取出Y的值输出,就可以得到灰度色彩的图像了。

  将采集到的RGB565的像素数据,输入到算法处理模块进行操作,由RGB565——>YCbCr——Gray官方给出的公式来算,先将RGB565拆分开R G B三个分量,使用如上公式计算的到Y Cb Cr是三个分量。

  RGB转YCbCr算法的仿真过程,从图中可以看出,加了流水线后的运算过程,每一级运算相差一个时钟,然而每一级都在进行新的运算,我们加了3级流水线,这样运算速度可以提升3倍。

  将行信号、场信号和像素数据使能信号进行延时,消耗多少周期便延时几个周期,保持时钟的同步性。

  最后将Y分量的数据输出,进行位拼接,16位的RGB565像素R、G、B分量分别对应的取Y分量的高位,最后的输出显示出来就是灰度图像了。

1 assign lcd_data = {per_img_Y1 [7:3],per_img_Y1 [7:2],per_img_Y1 [7:3]};//Gray

  这里还是采用高位补低位的方法。

  最终下载到FPGA开发板上,显示如下:

  图上为灰度显示,图下为转化前的原图,可以看出,灰度最终显示的是将彩色图像的颜色过滤掉,这样减小了图像的体积,滤掉多余的影响因素,为后面的滤波,边缘检测等图像处理做出关键性的基础。

转载请注明出处:NingHeChuan(宁河川)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏何俊林

直播技术总结(四)音视频数据压缩及编解码基础

音视频压缩技术是编解码中难点,常常会涉及很多算法处理问题。数据封装,转封装等,看下Agenda: 音视频为何需要压缩? 压缩编码的分类 常用压缩编码的方法 编码...

1897
来自专栏人工智能LeadAI

数据预处理 | 机器学习之特征工程

作者:苏小保(jacksu) 华为工程师 擅长分布式系统、大数据、机器学习。github地址:https://github.com/jacksu 通过特征提取,...

3609
来自专栏机器学习算法全栈工程师

不懂word2vec,还敢说自己是做NLP?

如今,深度学习炙手可热,deep learning在图像处理领域已经取得了长足的进展。随着Google发布word2vec,深度学习在自然语言处理领域也掀起了一...

985
来自专栏AI科技评论

大会 | CVPR 2018论文解读:真实监控场景中的异常事件检测

AI 科技评论按:本文为上海交通大学林天威为 AI 科技评论撰写的独家稿件,未经许可不得转载。 安防作为近年最热门的计算机视觉研究落地方向,与视频分析研究有着很...

4376
来自专栏媒矿工厂

HDR关键技术:HEVC/H.265编码方案

前文我们对HEVC的HDR编码优化技术做了介绍,侧重编码性能的提升。本章主要阐述HEVC中HDR/WCG相关的整体编码方案,包括不同应用场景下的HEVC扩展编码...

990
来自专栏人工智能头条

cuDNN 5对RNN模型的性能优化

2355
来自专栏机器之心

ICLR 2018 | 清华&斯坦福提出深度梯度压缩DGC,大幅降低分布式训练网络带宽需求

选自arXiv 作者:林宇鋆、韩松等 机器之心编译 参与:刘晓坤 来自清华大学和斯坦福大学的研究者们发现,分布式随机梯度下降训练中 99.9% 的梯度交换都是冗...

2818
来自专栏数据派THU

独家 | 一文读懂TensorFlow(附代码、学习资料)

人工智能、机器学习和深度学习 在介绍TensorFlow(以下简称为TF)之前,我们首先了解一下相关背景。 TF是一种机器学习框架,而机器学习经常和人工智能,...

27610
来自专栏机器人网

初学指南:贝叶斯统计

什么是Bayesian Statistics? Bayesian statistics is a particular approach to applying...

3266
来自专栏灯塔大数据

每周学点大数据 | No.4算法的分析之时间复杂度

No.4期 算法的分析之时间复杂度 小可:嗯,我觉得评价一个算法的最基本方式就是看它运行得快不快。 Mr. 王:嗯,这是重要的考量标准之一。研究算法运行得快不...

2779

扫码关注云+社区