Akka(0):聊聊对Akka的初步了解和想法

   前一段时间一直沉浸在函数式编程模式里,主要目的之一是掌握一套安全可靠的并发程序编程方法(concurrent programming),最终通过开源项目FunDA实现了单机多核CPU上程序的并行运算。但是,虽然通过在终端实现并行运算能充分利用多核CPU的计算能力把数据处理运算分布到前台可以大大减轻后台服务器的压力,提高系统整体效率,对现今大数据普遍盛行的系统计算要求还是远远不足的,只有通过硬件平行拓展(scale-out)形成机群并在之上实现分布式运算才能正真符合新环境对软件程序的要求。那么,下一个阶段目标应该是分布式运算了。众所周知,Akka应该是目前最著名和通用的分布式软件开发工具了,加上是scala语言的开源项目。由于Akka已经是一个在现实中被大量使用的成熟软件工具,网上各方面的参考资料比较丰富,感觉应该是一个比较理想的选择。

花了几天时间研究了一下Akka官方网站上的资料,先在这里把了解的情况在下面做个小结:

Akka程序是由多个Actor组成的。它的工作原理是把一项大运算分割成许多小任务然后把这些任务托付给多个Actor去运算。Actor不单可以在当前JVM中运行,也可以跨JVM在任何机器上运行,这基本上就是Akka程序实现分布式运算的关键了。当然,这也有赖于Akka提供的包括监管、监视各种Actor角色,各式运算管理策略和方式包括容错机制、内置线程管理、远程运行管理(remoting)等,以及一套分布式的消息系统来协调、控制整体运算的安全进行。

Actor是Akka系统中的最小运算单元。每个Actor只容许单一线程,这样来说Actor就是一种更细小单位的线程。Akka的编程模式和其内置的线程管理功能使用户能比较自然地实现多线程并发编程。Actor的主要功能就是在单一线程里运算维护它的内部状态,那么它的内部状态肯定是可变的(mutable state),但因为每个Actor都是独立的单一线程运算单元,加上运算是消息驱动的(message-driven),只容许线性流程,Actor之间运算结果互不影响,所以从Akka整体上来讲Actor又好像是纯函数不可变性的(pure immutable)。Actor的内部状态(internal state)与函数式编程不可变集合(immutable collection)的元素差不多,都是包嵌在一个类型内,即F[A] >>> Actor[A]从类型款式来讲很相像,那么我们可否对Actor进行函数组合(functional composition),然后实现函数式编程模式的Akka编程呢?应该是不可能的,因为我们无法对Actor的运算结果进行固定。一是我们无法防止Actor的运算产生副作用,再就是Actor的运算结果是无法预料的,例如它可能把结果发送给任何其它Actor,这样对同样的输入就可以产生不同的结果。我们可以把Actor视作不纯函数(impure function),对同样的输入可能会产生不同的输出结果,如此就无法把对Actor的编程归类为函数式编程了,但Actor编程的确是一种有别于其它编程模式、别具风格的编程模式,而且Akka还有一套领域特定语言DSL,是一种独立的编程模式,即Actor编程模式了。这是一种需要掌握的崭新编程模式。

Akka程序具备了以下的优点:

1、Responsive 快速响应

   以最快时间对用户请求进行回复(响应)

2、Resilient 高容错性

   可以通过对Actor的:

   复制(replication)、

   封闭(containment)、

   分离(isolation)、

   托管(delegation)来应对解决Actor产生的任何程度的错误和异常

3、Elastic 可伸缩性

   通过提升计算机配置的垂直扩展(scale-up)、添加网络中计算机数量的水平扩展(scale-out)等系统拓展能力

   实现在任何负载压力情况下的快速响应

4、Message-driven 消息驱动

   - 异步通信(asynchronous communication)

   - 松散耦合(loosely coupled)

   - 位置透明的Actor定位方式

   - 负载均衡(load management)、流程控制(flow control)、back-pressure

上面所述特点之一的消息驱动模式中提供了位置透明的Actor定位方式,可以简单的通过设定消息接收方地址来实现程序的分布式运算。这点倒是很有趣。

除了普通功能的Actor之外,Akka还提供了几种具有特殊功能的Actor,包括:路由(routingActer)、有限状态机(FSMActor)、持久式(persistenceActor)。其中persistenceActor很有吸引力,它可以通过CQRS模式帮助实现新的数据库操作模式ES(Event-Sourcing)。CQRS模式的基本原理是对数据库的读和写进行分离操作,目的是提高大数据类型网络应用程序的响应。当然,从另一个方面来讲,Event-Sourcing作为一种新的数据库操作模式,应该能解决任何数据库应用软件所普遍面对的数据重演功能缺失,以及数据库使用压力等问题。

初步打算下面的主攻方向是基于persistenceActor的ES模式数据库应用和基于Actor-http的Microservice工具库。当然,希望通过各种努力最终实现让那些不精通Akka的朋友们能方便的编写Actor模式的分布式应用程序。这可能会涉及到对Akka功能的再组合,搭建新的更高层次的抽象框架、提供API等。当然,这些还是需要对Akka进行详细的研究学习后才能有所定论。

刚好,发现在网上的基于scala的Akka讨论示范并不多,那在下面一段时间的讨论里我们就开始从头学习Akka吧。。。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏EAWorld

生成全局唯一ID的3个思路,来自一个资深架构师的总结

标识(ID / Identifier)是无处不在的,生成标识的主体是人,那么它就是一个命名过程,如果是计算机,那么它就是一个生成过程。如何保证分布式系统下,并行...

3586
来自专栏恰同学骚年

设计模式的征途—18.策略(Strategy)模式

俗话说条条大路通罗马,很多情况下实现某个目标地途径都不只一条。在软件开发中,也会时常遇到这样的情况,实现某一个功能有多条途径,每一条途径都对应一种算法。此时,可...

955
来自专栏程序人生 阅读快乐

Java 8实战

本书全面介绍了Java 8 这个里程碑版本的新特性,包括Lambdas、流和函数式编程。有了函数式的编程特性,可以让代码更简洁,同时也能自动化地利用多核硬件。全...

651
来自专栏美团技术团队

Hades:移动端静态分析框架

作为全球最大的互联网 + 生活服务平台,美团点评近年来在业务上取得了飞速的发展。为支持业务的快速发展,移动研发团队规模也逐渐从零星的小作坊式运营,演变为千人级研...

433
来自专栏ThoughtWorks

改善单元测试的新方法|洞见

鄢倩 ThoughtWorks 我们为什么要写单元测试? "满足需求"是所有软件存在的必要条件,单元测试一定是为它服务的。从这一点出发,我们可以总结出写单元测试...

2765

Map-Reduce风格:数据感知vFabric GemFire中的分布式查询

大量快速的数据正在为当今市场上一些最有趣的计算机会提供动力。但想要达成目标,我们需要改变数据层的方法。企业正试图从昂贵的大型架构转向虚拟化数据中心,并更有效地利...

2366
来自专栏Golang语言社区

【Go 语言社区】在 Go 语言中,如何正确的使用并发

Glyph Lefkowitz最近写了一篇启蒙文章,其中他详细的说明了一些关于开发高并发软件的挑战,如果你开发软件但是没有阅读这篇问题,那么我建议你阅读一篇。这...

3389
来自专栏跨界架构师

如何一步一步用DDD设计一个电商网站(六)—— 给购物车加点料,集成售价上下文

  前几篇已经实现了一个最简单的购买过程,这次开始往这个过程中增加一些东西。比如促销、会员价等,在我们的第一篇文章(如何一步一步用DDD设计一个电商网站(一)—...

932
来自专栏程序员与猫

计算机组成原理之机器

1.1 计算机系统概论 1.1 计算机系统简介 把感应器嵌入和装备到电网,铁路,桥梁等各种物体中,并且被普遍连接,形成所谓“物联网”,然后将“物联网”与现代计算...

1829
来自专栏MyBlog

软件工程攻略

由于软件的开发存在这么多的问题, 其主要原因是规模太大并且缺少一种有效的方法来进行整个软件的开发 从而引出软件工程

792

扫码关注云+社区