Akka(18): Stream:组合数据流,组件-Graph components

   akka-stream的数据流可以由一些组件组合而成。这些组件统称数据流图Graph,它描述了数据流向和处理环节。Source,Flow,Sink是最基础的Graph。用基础Graph又可以组合更复杂的复合Graph。如果一个Graph的所有端口(输入、输出)都是连接的话就是一个闭合流图RunnableGraph,否则就属于·开放流图PartialGraph。一个完整的(可运算的)数据流就是一个RunnableGraph。Graph的输出出入端口可以用Shape来描述:

/**
 * A Shape describes the inlets and outlets of a [[Graph]]. In keeping with the
 * philosophy that a Graph is a freely reusable blueprint, everything that
 * matters from the outside are the connections that can be made with it,
 * otherwise it is just a black box.
 */
abstract class Shape {
  /**
   * Scala API: get a list of all input ports
   */
  def inlets: immutable.Seq[Inlet[_]]

  /**
   * Scala API: get a list of all output ports
   */
  def outlets: immutable.Seq[Outlet[_]]

...

Shape类型的抽象函数inlets,outlets分别代表Graph形状的输入、输出端口。下面列出了aka-stream提供的几个现有形状Shape:

final case class SourceShape[+T](out: Outlet[T @uncheckedVariance]) extends Shape {...}
final case class FlowShape[-I, +O](in: Inlet[I @uncheckedVariance], out: Outlet[O @uncheckedVariance]) extends Shape {...}
final case class SinkShape[-T](in: Inlet[T @uncheckedVariance]) extends Shape {...}
sealed abstract class ClosedShape extends Shape
/**
 * A bidirectional flow of elements that consequently has two inputs and two
 * outputs, arranged like this:
 *
 * {{{
 *        +------+
 *  In1 ~>|      |~> Out1
 *        | bidi |
 * Out2 <~|      |<~ In2
 *        +------+
 * }}}
 */
final case class BidiShape[-In1, +Out1, -In2, +Out2](
  in1:  Inlet[In1 @uncheckedVariance],
  out1: Outlet[Out1 @uncheckedVariance],
  in2:  Inlet[In2 @uncheckedVariance],
  out2: Outlet[Out2 @uncheckedVariance]) extends Shape {...}
object UniformFanInShape {
  def apply[I, O](outlet: Outlet[O], inlets: Inlet[I]*): UniformFanInShape[I, O] =
    new UniformFanInShape(inlets.size, FanInShape.Ports(outlet, inlets.toList))
}
object UniformFanOutShape {
  def apply[I, O](inlet: Inlet[I], outlets: Outlet[O]*): UniformFanOutShape[I, O] =
    new UniformFanOutShape(outlets.size, FanOutShape.Ports(inlet, outlets.toList))
}

Shape是Graph类型的一个参数:

trait Graph[+S <: Shape, +M] {
  /**
   * Type-level accessor for the shape parameter of this graph.
   */
  type Shape = S @uncheckedVariance
  /**
   * The shape of a graph is all that is externally visible: its inlets and outlets.
   */
  def shape: S
...

RunnableGraph类型的Shape是ClosedShape:

/**
 * Flow with attached input and output, can be executed.
 */
final case class RunnableGraph[+Mat](override val traversalBuilder: TraversalBuilder) extends Graph[ClosedShape, Mat] {
  override def shape = ClosedShape

  /**
   * Transform only the materialized value of this RunnableGraph, leaving all other properties as they were.
   */
  def mapMaterializedValue[Mat2](f: Mat ⇒ Mat2): RunnableGraph[Mat2] =
    copy(traversalBuilder.transformMat(f.asInstanceOf[Any ⇒ Any]))

  /**
   * Run this flow and return the materialized instance from the flow.
   */
  def run()(implicit materializer: Materializer): Mat = materializer.materialize(this)
...

我们可以用akka-stream提供的GraphDSL来构建Graph。GraphDSL继承了GraphApply的create方法,GraphDSL.create(...)就是构建Graph的方法:

object GraphDSL extends GraphApply {...}
trait GraphApply {
  /**
   * Creates a new [[Graph]] by passing a [[GraphDSL.Builder]] to the given create function.
   */
  def create[S <: Shape]()(buildBlock: GraphDSL.Builder[NotUsed] ⇒ S): Graph[S, NotUsed] = {
    val builder = new GraphDSL.Builder
    val s = buildBlock(builder)

    createGraph(s, builder)
  }
...
def create[S <: Shape, Mat](g1: Graph[Shape, Mat])(buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape) ⇒ S): Graph[S, Mat] = {...}
def create[S <: Shape, Mat, M1, M2](g1: Graph[Shape, M1], g2: Graph[Shape, M2])(combineMat: (M1, M2) ⇒ Mat)(buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape, g2.Shape) ⇒ S): Graph[S, Mat] = {...}
...
def create[S <: Shape, Mat, M1, M2, M3, M4, M5](g1: Graph[Shape, M1], g2: Graph[Shape, M2], g3: Graph[Shape, M3], g4: Graph[Shape, M4], g5: Graph[Shape, M5])(combineMat: (M1, M2, M3, M4, M5) ⇒ Mat)(buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape, g2.Shape, g3.Shape, g4.Shape, g5.Shape) ⇒ S): Graph[S, Mat] = {
...}

buildBlock函数类型:buildBlock: GraphDSL.Builder[Mat] ⇒ (g1.Shape, g2.Shape,...,g5.Shape) ⇒ S,g?代表合并处理后的开放型流图。下面是几个最基本的Graph构建试例:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._

object SimpleGraphs extends App{

  implicit val sys = ActorSystem("streamSys")
  implicit val ec = sys.dispatcher
  implicit val mat = ActorMaterializer()

  val source = Source(1 to 10)
  val flow = Flow[Int].map(_ * 2)
  val sink = Sink.foreach(println)


  val sourceGraph = GraphDSL.create(){implicit builder =>
    import GraphDSL.Implicits._
    val src = source.filter(_ % 2 == 0)
    val pipe = builder.add(Flow[Int])
    src ~> pipe.in
    SourceShape(pipe.out)
  }

  Source.fromGraph(sourceGraph).runWith(sink).andThen{case _ => } // sys.terminate()}

  val flowGraph = GraphDSL.create(){implicit builder =>
    import GraphDSL.Implicits._

    val pipe = builder.add(Flow[Int])
    FlowShape(pipe.in,pipe.out)
  }

  val (_,fut) = Flow.fromGraph(flowGraph).runWith(source,sink)
  fut.andThen{case _ => } //sys.terminate()}


  val sinkGraph = GraphDSL.create(){implicit builder =>
     import GraphDSL.Implicits._
     val pipe = builder.add(Flow[Int])
     pipe.out.map(_ * 3) ~> Sink.foreach(println)
     SinkShape(pipe.in)
  }

  val fut1 = Sink.fromGraph(sinkGraph).runWith(source)

  Thread.sleep(1000)
  sys.terminate()

上面我们示范了Source,Flow,Sink的Graph编写,我们使用了Flow[Int]作为共同基础组件。我们知道:akka-stream的Graph可以用更简单的Partial-Graph来组合,而所有Graph最终都是用基础流图Core-Graph如Source,Flow,Sink组合而成的。上面例子里我们是用builder.add(...)把一个Flow Graph加入到一个空的Graph模版里,builder.add返回Shape pipe用于揭露这个被加入的Graph的输入输出端口。然后我们按目标Graph的功能要求把pipe的端口连接起来就完成了这个数据流图的设计了。测试使用证明这几个Graph的功能符合预想。下面我们还可以试着自定义一种类似的Pipe类型Graph来更细致的了解Graph组合的过程。所有基础组件Core-Graph都必须定义Shape来描述它的输入输出端口,定义GraphStage中的GraphStateLogic来描述对数据流元素具体的读写方式。

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import scala.collection.immutable

case class PipeShape[In,Out](
    in: Inlet[In],
    out: Outlet[Out]) extends Shape {

  override def inlets: immutable.Seq[Inlet[_]] = in :: Nil

  override def outlets: immutable.Seq[Outlet[_]] = out :: Nil

  override def deepCopy(): Shape = 
    PipeShape(
      in = in.carbonCopy(),
      out = out.carbonCopy()
    )
}

PipeShape有一个输入端口和一个输出端口。因为继承了Shape类所以必须实现Shape类的抽象函数。假设我们设计一个Graph,能把用户提供的一个函数用来对输入元素进行施用,如:source.via(ApplyPipe(myFunc)).runWith(sink)。当然,我们可以直接使用source.map(r => myFunc).runWith(sink),不过我们需要的是:ApplyPipe里可能涉及到许多预设定的共用功能,然后myFunc是其中的一部分代码。如果用map(...)的话用户就必须提供所有的代码了。ApplyPipe的形状是PipeShape,下面是它的GraphState设计:

  class Pipe[In, Out](f: In => Out) extends GraphStage[PipeShape[In, Out]] {
    val in = Inlet[In]("Pipe.in")
    val out = Outlet[Out]("Pipe.out")

    override def shape = PipeShape(in, out)

    override def initialAttributes: Attributes = Attributes.none

    override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
      new GraphStageLogic(shape) with InHandler with OutHandler {

        private def decider =
          inheritedAttributes.get[SupervisionStrategy].map(_.decider).getOrElse(Supervision.stoppingDecider)
        
        override def onPull(): Unit = pull(in)

        override def onPush(): Unit = {
          try {
            push(out, f(grab(in)))
          }
          catch {
            case NonFatal(ex) ⇒ decider(ex) match {
              case Supervision.Stop ⇒ failStage(ex)
              case _ ⇒ pull(in)
            }
          }
        }

        setHandlers(in,out, this)
      }
  }

在这个Pipe GraphStage定义里首先定义了输入输出端口in,out,然后通过createLogic来定义GraphStageLogic,InHandler,outHandler。InHandler和OutHandler分别对应输入输出端口上数据元素的活动处理方式:

/**
 * Collection of callbacks for an input port of a [[GraphStage]]
 */
trait InHandler {
  /**
   * Called when the input port has a new element available. The actual element can be retrieved via the
   * [[GraphStageLogic.grab()]] method.
   */
  @throws(classOf[Exception])
  def onPush(): Unit

  /**
   * Called when the input port is finished. After this callback no other callbacks will be called for this port.
   */
  @throws(classOf[Exception])
  def onUpstreamFinish(): Unit = GraphInterpreter.currentInterpreter.activeStage.completeStage()

  /**
   * Called when the input port has failed. After this callback no other callbacks will be called for this port.
   */
  @throws(classOf[Exception])
  def onUpstreamFailure(ex: Throwable): Unit = GraphInterpreter.currentInterpreter.activeStage.failStage(ex)
}

/**
 * Collection of callbacks for an output port of a [[GraphStage]]
 */
trait OutHandler {
  /**
   * Called when the output port has received a pull, and therefore ready to emit an element, i.e. [[GraphStageLogic.push()]]
   * is now allowed to be called on this port.
   */
  @throws(classOf[Exception])
  def onPull(): Unit

  /**
   * Called when the output port will no longer accept any new elements. After this callback no other callbacks will
   * be called for this port.
   */
  @throws(classOf[Exception])
  def onDownstreamFinish(): Unit = {
    GraphInterpreter
      .currentInterpreter
      .activeStage
      .completeStage()
  }
}

akka-stream Graph的输入输出处理实现了Reactive-Stream协议。所以我们最好使用akka-stream提供现成的pull,push来重写抽象函数onPull,onPush。然后用setHandlers来设定这个GraphStage的输入输出及处理函数handler:

  /**
   * Assign callbacks for linear stage for both [[Inlet]] and [[Outlet]]
   */
  final protected def setHandlers(in: Inlet[_], out: Outlet[_], handler: InHandler with OutHandler): Unit = {
    setHandler(in, handler)
    setHandler(out, handler)
  }
 /**
   * Assigns callbacks for the events for an [[Inlet]]
   */
  final protected def setHandler(in: Inlet[_], handler: InHandler): Unit = {
    handlers(in.id) = handler
    if (_interpreter != null) _interpreter.setHandler(conn(in), handler)
  }
  /**
   * Assigns callbacks for the events for an [[Outlet]]
   */
  final protected def setHandler(out: Outlet[_], handler: OutHandler): Unit = {
    handlers(out.id + inCount) = handler
    if (_interpreter != null) _interpreter.setHandler(conn(out), handler)
  }

有了Shape和GraphStage后我们就可以构建一个Graph:

def applyPipe[In,Out](f: In => Out) = GraphDSL.create() {implicit builder =>
    val pipe = builder.add(new Pipe(f))
    FlowShape(pipe.in,pipe.out)
  }

也可以直接用来组合一个复合Graph:

  RunnableGraph.fromGraph(
    GraphDSL.create(){implicit builder =>
      import GraphDSL.Implicits._

      val source = Source(1 to 10)
      val sink = Sink.foreach(println)
      val f: Int => Int = _ * 3
      val pipeShape = builder.add(new Pipe[Int,Int](f))
      source ~> pipeShape.in
      pipeShape.out~> sink
      ClosedShape

    }
  ).run()

整个例子源代码如下:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.stream.ActorAttributes._
import akka.stream.stage._

import scala.collection.immutable
import scala.util.control.NonFatal

object PipeOps {

  case class PipeShape[In, Out](
                                 in: Inlet[In],
                                 out: Outlet[Out]) extends Shape {

    override def inlets: immutable.Seq[Inlet[_]] = in :: Nil

    override def outlets: immutable.Seq[Outlet[_]] = out :: Nil

    override def deepCopy(): Shape =
      PipeShape(
        in = in.carbonCopy(),
        out = out.carbonCopy()
      )
  }

  class Pipe[In, Out](f: In => Out) extends GraphStage[PipeShape[In, Out]] {
    val in = Inlet[In]("Pipe.in")
    val out = Outlet[Out]("Pipe.out")

    override def shape = PipeShape(in, out)

    override def initialAttributes: Attributes = Attributes.none

    override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
      new GraphStageLogic(shape) with InHandler with OutHandler {

        private def decider =
          inheritedAttributes.get[SupervisionStrategy].map(_.decider).getOrElse(Supervision.stoppingDecider)

        override def onPull(): Unit = pull(in)

        override def onPush(): Unit = {
          try {
            push(out, f(grab(in)))
          }
          catch {
            case NonFatal(ex) ⇒ decider(ex) match {
              case Supervision.Stop ⇒ failStage(ex)
              case _ ⇒ pull(in)
            }
          }
        }

        setHandlers(in,out, this)
      }
  }

  def applyPipe[In,Out](f: In => Out) = GraphDSL.create() {implicit builder =>
    val pipe = builder.add(new Pipe(f))
    FlowShape(pipe.in,pipe.out)
  }

}

object ShapeDemo1 extends App {
import PipeOps._
  implicit val sys = ActorSystem("streamSys")
  implicit val ec = sys.dispatcher
  implicit val mat = ActorMaterializer()

  RunnableGraph.fromGraph(
    GraphDSL.create(){implicit builder =>
      import GraphDSL.Implicits._

      val source = Source(1 to 10)
      val sink = Sink.foreach(println)
      val f: Int => Int = _ * 3
      val pipeShape = builder.add(new Pipe[Int,Int](f))
      source ~> pipeShape.in
      pipeShape.out~> sink
      ClosedShape

    }
  ).run()


  val fut = Source(1 to 10).via(applyPipe[Int,Int](_ * 2)).runForeach(println)

  scala.io.StdIn.readLine()

  sys.terminate()


}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏岑玉海

Hive Tuning(一) 连接策略

群里共享了一本hive调优的书记,名叫《Hive Tunning》,就忍不住开始看了,也顺便记录一下自己学到的东西,备忘! 首先,这是hive的数据摘要,别...

3556
来自专栏calmound

强连通专题

POJ 2762 Going from u to v or from v to u? 题意:判断该图的任意两点是否可达 分析:tarjan后进行缩点,缩点后再建...

2658
来自专栏点滴积累

使用bokeh-scala进行数据可视化

目录 前言 bokeh简介及胡扯 bokeh-scala基本代码 我的封装 总结 一、前言        最近在使用spark集群以及geotrellis框架(...

3378
来自专栏数据魔术师

干货 | 十分钟掌握禁忌搜索算法求解带时间窗的车辆路径问题(附C++代码和详细代码注释)

一 什么是禁忌搜索算法? 禁忌搜索算法(Tabu Search Algorithm,简称TS)起源于对于人类记忆功能的模仿,是一种亚启发式算法(meta-...

4567
来自专栏腾讯Bugly的专栏

优化安卓应用内存的神秘方法以及背后的原理,一般人我不告诉他

安卓应用一般都害怕自己被杀,内存占用高是被杀的重要原因之一,所以大家都想尽各种招数应对,但效果都一般。 但有一招: WindowManagerGlobal.ge...

4146
来自专栏用户2442861的专栏

常见的计算机专业词汇

   作为计算机相关专业学生,面试或者笔试时不可避免地会遇到与专业相关的问题,而考核专业问题的时候,又不可避免地涉及到很多专业词汇,这就需要求职者掌握好常见的...

542
来自专栏流媒体人生

ATL源码学习---线程模型支持

  线程锁类型有CComCriticalSection,CComAutoCriticalSection、 CComSafeDeleteCriticalSecti...

633
来自专栏开源FPGA

FPGA设计思想(持续更新)

一、 流水线设计   将原本一个时钟周期完成的较大的组合逻辑通过合理的切割后分由多个时钟周期完成。该部分逻辑运行的时钟频率会有明显对的提升,提高系统的性能用面积...

21410
来自专栏数据结构与算法

P2605 [ZJOI2010]基站选址

题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。...

3708
来自专栏开源FPGA

基于FPGA的HDMI高清显示接口驱动

  本站点博客将逐步迁移至http://ninghechuanblogs.cn/   HDMI是(High Definition Multimedia Inte...

4309

扫码关注云+社区